×

zbMATH — the first resource for mathematics

An Ablowitz-Ladik system with a discrete potential. I: Extended resolvent. (English. Russian original) Zbl 0960.37035
Theor. Math. Phys. 119, No. 1, 407-419 (1999); translation from Teor. Mat. Fiz. 119, No. 1, 20-33 (1999).
This paper is devoted to the spectral theory of the operator \(L(w)\) given by the infinite matrix \[ L_{m,n} (w)= \delta_{m,n-1}- \begin{pmatrix} w &r_n\\ s_n &1/w \end{pmatrix} \delta_{m,n}, \quad m,n\in \mathbb{Z},\;w\in \mathbb{C}, \] where each element of the matrix is a \((2\times 2)\) matrix, \(\delta_{m,n}\) is the Kronecker symbol, and a \((2\times 2)\) unit matrix factor is omitted in the term \(\delta_{m,n-1}\) and \(r_n,s_n\in \{0,1\}\), \(n\in \mathbb{Z}\). The authors consider potentials with finite support and corresponding an Ablowitz-Ladik \(L(w) \varphi=0\) linear system, which is known to be the discretized version of the Zakharov-Shabat linear problem. Here the extended resolvent of this system is constructed and the singularities of this operator are analyzed in detail.
MSC:
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
47B39 Linear difference operators
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. J. Ablowitz and J. Ladik,J. Math. Phys. 16, 598 (1975). · Zbl 0296.34062
[2] M. J. Ablowitz and J. Ladik,J. Math. Phys.,17, 1011 (1976). · Zbl 0322.42014
[3] M. J. Ablowitz and H. Segur,Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). · Zbl 0472.35002
[4] M. Boiti, J. Leon, and F. Pempinelli,J. Math. Phys.,37, 2824 (1996). · Zbl 0865.35118
[5] M. J. Ablowitz, J. M. Kaiser, and L. A. Takhtajan,Phys. Rev. A,44, 6909 (1990).
[6] L. Takhtajan, ”Integrable cellular automata and AKNS hierarchy”, in:Symmetries and Integrability of Difference Equations (CRM Proc. Lecture Notes, Vol. 9 (D. Levi, L. Vinet, and P. Winternitz, eds.), AMS, Providence, RI (1996). · Zbl 0860.35117
[7] D. Farmer, T. Toffoli, and S. Wolfram, eds.,Cellular Automata, North-Holland, Amsterdam (1984). · Zbl 0556.00013
[8] S. Wolfram, ed.,Theory and Application of the Cellular Automata, World Scientific, Singapore (1986). · Zbl 0609.68043
[9] P. Manneville, N. Boccara, G. Vichniac, and R. Bidaux, eds.,Cellular Automata and Modeling of the Complex Systems, Springer, Heidelberg (1989). · Zbl 0741.68015
[10] N. Boccara, E. Goles, S. Martinez, and P. Palmerini, eds.,Cellular Automata and Cooperative Phenomena, Kluwer, Dordrecht (1993).
[11] S. Wolfram, ”Cellular automata in condensed matter physics”, in:Scaling Phenomena in Disordered Systems (R. Pynn and A. Skjeltorp, eds.), Plenum, New York (1985).
[12] J. K. Park, K. Steiglitz, and W. P. Thurston,Physica D,19, 423 (1986). · Zbl 0604.68061
[13] T. S. Papatheodorou, M. J. Ablowitz, and Y. G. Saridakis,Stud. Appl. Math.,79, 173 (1988).
[14] T. S. Papatheodorou and A. S. Fokas,Stud. Appl. Math.,80, 165 (1989).
[15] A. S. Fokas, E. P. Papadopoulou, Y. G. Saridakis, and M. J. Ablowitz,Stud. Appl. Math.,81, 153 (1989).
[16] A. S. Fokas, E. P. Papadopoulou, and Y. G. Saridakis,Phys. Lett. A 147, 369 (1990).
[17] D. Takahashi and J. Satsuma,J. Phys. Soc. Japan.,59, 3514 (1990).
[18] M. Bruschi, P. M. Santini, and O. Ragnisco,Phys. Lett. A,169, 151 (1992).
[19] A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall,Commun. Math. Phys.,158, 127 (1993). · Zbl 0795.35098
[20] D. Takahashi and J. Matsukidaira,Phys. Lett. A 209, 184 (1995). · Zbl 1020.37501
[21] T. Tokihiro, D. Takahashi, J. Matsukidaira, and J. Satsuma,Phys. Rev. Lett.,76, 3247 (1996).
[22] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro, and T. Torii,Phys. Lett. A,225, 287 (1997). · Zbl 0962.82526
[23] A. Pogrebkov, ”Discrete Schrödinger equation on finite field and associated cellular automaton”, Preprint mathph/9811007 (1998). · Zbl 0979.37033
[24] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov,Theor. Math. Phys.,93, 1200 (1992). · Zbl 0806.35131
[25] M. Boiti, F. Pempinelli, and A. K. Pogrebkov,Theor. Math. Phys.,99, 511 (1994). · Zbl 0850.35094
[26] A. K. Pogrebkov and M. C. Prati,Nuovo Cimento B,111, 1495 (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.