×

Big pieces of \(C^{1,\alpha}\)-graphs for minimizers of the Mumford-Shah functional. (English) Zbl 0960.49024

Summary: We consider the generalization of the Mumford-Shah functional defined by \[ J(u, K)= \int_{\Omega\setminus K}|u-g|^2+ \int_{\Omega\setminus K}|\nabla u|^2+ H^{n- 1}(K), \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^n\) \((n\geq 2)\), \(g\) a bounded measurable function on \(\Omega\), \(K\) a relatively closed subset of \(\Omega\), \(H^{n-1}(K)\) denotes the \((n-1)\)-dimensional Hausdorff measure on \(K\) and \(u\in W^{1,2}(\Omega\setminus K)\). We prove here that there exist \(\alpha\in (0,1)\) and \(C>1\) such that if \((u,K)\) is an irreducible minimizer for \(J\) and \(B(x,r)\) a ball centered on \(K\), contained in \(\Omega\), with radius \(r\leq 1\), then there is a ball \(B\) centered on \(K\), contained in \(B(x,r)\), with radius \(\geq C^{-1}r\), such that \(K\cap B\) is a \(C^{1,\alpha}\)-hypersurface. Moreover, the constants \(\alpha\), \(C\) and the \(C^{1,\alpha}\)-constant for \(K\cap B\) depend only on \(n\) and \(\|g\|_\infty\). In particular, the Hausdorff dimension of the set of points in \(K\) around which \(K\) is a \(C^{1,\alpha}\)-hypersurface is strictly less than \(n-1\).

MSC:

49N60 Regularity of solutions in optimal control
49J10 Existence theories for free problems in two or more independent variables
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] ’ R. Adams , ” Sobolev Spaces ”, Academic Press , New York - London , 1975 . MR 450957 | Zbl 0314.46030 · Zbl 0314.46030
[2] L. Ambrosio , Existence theory for a new class of variational problems , Arch. Rational Mech. Anal. 111 ( 1990 ), 291 - 322 . MR 1068374 | Zbl 0711.49064 · Zbl 0711.49064 · doi:10.1007/BF00376024
[3] L. Ambrosio - N. Fusco - D. Pallara , Partial regularity of free discontinuity sets II , Ann. Scuola Norm. Sup. Pisa Cl. Sci. ( 4 ) 24 ( 1997 ), 39 - 62 . Numdam | MR 1475772 | Zbl 0896.49024 · Zbl 0896.49024
[4] M. Carriero - A. Leaci , Existence theorem for a Dirichlet problem with free discontinuity set , Nonlinear Anal. 15 ( 1990 ), 661 - 677 . MR 1073957 | Zbl 0713.49003 · Zbl 0713.49003 · doi:10.1016/0362-546X(90)90006-3
[5] G. Dal Maso - J.-M. Morel - S. Solimini , A variational method in image segmentation: existence and approximation results , Acta Math. 168 ( 1992 ), 89 - 151 . MR 1149865 | Zbl 0772.49006 · Zbl 0772.49006 · doi:10.1007/BF02392977
[6] G. David , ” Wavelets and singular integrals on curves and surfaces ”, Lecture Notes in Math , Vol. 1465 , Springer-Verlag , Berlin , 1991 . MR 1123480 | Zbl 0764.42019 · Zbl 0764.42019 · doi:10.1007/BFb0091544
[7] G. David , C1-arcs for minimizers of the Mumford-Shah functional ,, SIAM J. Appl. Math 56 ( 1996 ), 783 - 888 . MR 1389754 | Zbl 0870.49020 · Zbl 0870.49020 · doi:10.1137/S0036139994276070
[8] G. David - S. Semmes , ” Analysis of and on uniformly rectifiable sets ”, Math. Surveys Monogr. , Vol. 38 , Amer. Math. Soc. , Providence , 1993 . MR 1251061 | Zbl 0832.42008 · Zbl 0832.42008
[9] G. David - S. Semmes , On the singular sets of minimizers of the Mumford-Shahfunctional , J. Math. Pures Appl. ( 4 ) 75 ( 1996 ), 299 - 342 . MR 1411155 | Zbl 0853.49010 · Zbl 0853.49010
[10] G. David - S. Semmes , Uniform rectifiability and singular sets , Ann. Inst. H. Poincaré Anal. Non Linéaire 13 ( 1996 ), 383 - 443 . Numdam | MR 1404317 | Zbl 0908.49030 · Zbl 0908.49030
[11] E. De Giorgi - M. Carriero - A. Leaci , Existence theorem fora minimum problem with free discontinuity set , Arch. Rational Mech. Anal. 108 ( 1989 ), 195 - 218 . MR 1012174 | Zbl 0682.49002 · Zbl 0682.49002 · doi:10.1007/BF01052971
[12] F. Maddalena - S. Solimini , Regularity properties of free discontinuity sets , preprint. · Zbl 1024.49013 · doi:10.1016/S0294-1449(01)00078-6
[13] D. Mumford - J. Shah , Optimal approximations by piecewise smooth functions and associated variational problems , Comm. Pure Appl. Math. 42 ( 1989 ), 577 - 685 . MR 997568 | Zbl 0691.49036 · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.