×

zbMATH — the first resource for mathematics

Filling electron bands in the periodic Anderson model. (English. Russian original) Zbl 0960.82535
Theor. Math. Phys. 108, No. 1, 930-936 (1996); translation from Teor. Mat. Fiz. 108, No. 1, 101-108 (1996).
Summary: The filling sequence for correlated energy bands is investiqated in the periodic Anderson model (PAM) (the Anderson model on a lattice) with strong electron-electron interaction. The approach involving correlated Hubbard subbands is shown to be compatible with the standard band theory approach. The structure of allowed energy bands is found for the PAM in the absence of the order parameter. The dependence of the chemical potential on the electron filling is obtained.
MSC:
82D40 Statistical mechanical studies of magnetic materials
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. Bastide and C. Lacroix,J. Phys. C,21, 3557 (1988). · doi:10.1088/0022-3719/21/19/009
[2] F. Mancini, M. Marinaro, and Y. Nakao,Physica B,159, 330 (1989). · doi:10.1016/0921-4526(89)90013-6
[3] P. S. Riseborough,Phys. Rev. B,45, 13984 (1992). · doi:10.1103/PhysRevB.45.13984
[4] J. Karbowski and J. Spalek,Phys. Rev. B,49, 1454 (1994). · doi:10.1103/PhysRevB.49.1454
[5] L. D. Didukh and I. V. Stasyuk,Fiz. Met. Metalloved.,36, 582 (1968).
[6] V. A. Ivanov,J. Phys.: Condens. Matter,6, 2065 (1994). · doi:10.1088/0953-8984/6/10/024
[7] I. V. Stasyuk and A. M. Shvaika, ”On the electron spectrum of the Hubbard model, taking into account interaction with local anharmonic vibrations”, Preprint No. 91-56P, Inst. Phys. Condensed Matter, Lvov (1991).
[8] J. Hubbard,Proc. Roy. Soc. A,276, 238 (1963). · doi:10.1098/rspa.1963.0204
[9] A. V. Vedyaev, V. A. Ivanov, and V. E. Shilov,Teor. Mat. Fiz.,64, 163–170 (1985).
[10] K. A. Kikoin,Zh. Eksp. Teor. Fiz.,85, 1000 (1983).
[11] M. Gaudin,Nucl. Phys.,15, 89 (1960). · Zbl 0113.22204 · doi:10.1016/0029-5582(60)90285-6
[12] B. Westwanski and A. Pawlikowsky,Phys. Lett. A,43, 21 (1973). · doi:10.1016/0375-9601(73)90613-0
[13] B. Westwanski,Phys. Lett. A,74, 27 (1973). · doi:10.1016/0375-9601(73)90944-4
[14] V. D. Slobodyan and I. V. Stasyuk,Teor. Mat. Fiz.,19, 423–429 (1974).
[15] B. G. Vaks, A. I. Larkin, and S. A. Pikin,Zh. Eksp. Teor. Fiz.,53, 281, 1089 (1967).
[16] R. O. Zaitsev,Zh. Eksp. Teor. Fiz.,70, 1100 (1976).
[17] R. Hayn, V. Yu. Yusshankhai, and S. V. Lovtsov,Phys. Rev. B,47, 5253 (1993). · doi:10.1103/PhysRevB.47.5253
[18] N. M. Plakida, R. Hayn, and J.-L. Richard,Phys. Rev. B,51, 16599 (1995). · doi:10.1103/PhysRevB.51.16599
[19] V. I. Belinicher and A. L. Chernyshev,Phys. Rev. B,47, 390 (1993). · doi:10.1103/PhysRevB.47.390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.