Jacobson, Michael J. jun.; Williams, Hugh C. The size of the fundamental solutions of consecutive Pell equations. (English) Zbl 0961.11007 Exp. Math. 9, No. 4, 631-640 (2000). The authors look at the two Pellian equations: \(X^2-(D-1) Y^2=1\) and \(X^2-DY^2=1\). If \((X_0,Y_0)\) and \((X_1,Y_1)\) are least positive solutions, respectively of these Pell equations, then let \(\rho(D)= \log X_1/ \log X_0\). They show that \(\rho(D)\) can be arbitrarily large, and provide heuristic evidence for infinitely many values of \(D\) for which \(\rho(D)\gg \sqrt D\log\log D/ \log D\).This is particularly important since, as the authors indicate, the result by F. Halter-Koch in Section 3 of [Abh. Math. Semin. Univ. Hamb. 59, 171-181 (1989; Zbl 0718.11054)] has an unrecoverable error, thereby invalidating that result.The authors are able to go in a different direction to obtain a better result than Y. Yamamoto’s result given in [Osaka J. Math. 8, 261-270 (1971; Zbl 0243.12001)], which Halter-Koch’s result purported to advance. They indeed establish that there are infinitely many values of \(D\) such that \(\rho(D) \gg D^{1/6}/ \log D\). Reviewer: Richard A.Mollin (Calgary) Cited in 1 Document MSC: 11D09 Quadratic and bilinear Diophantine equations 11R11 Quadratic extensions 11R27 Units and factorization 11Y40 Algebraic number theory computations Keywords:continued fractions; real quadratic field; Pell equations Citations:Zbl 0718.11054; Zbl 0243.12001 Software:LiDIA × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML Online Encyclopedia of Integer Sequences: Numbers n such that both n-1 and n are nonsquares and the least positive solutions to the Pell equations x1^2 - n*y1^2 =1 and x0^2-(n-1)*y0^2 = 1 have a record for rho(n)=log(x1)/log(x0). References: [1] DOI: 10.1090/S0025-5718-1990-1023756-8 · doi:10.1090/S0025-5718-1990-1023756-8 [2] Beiler A. H., Recreations in theory of numbers: the queen of mathematics entertains (1964) · Zbl 0154.04001 [3] Carmichael R. D., The theory of numbers and Diophantine analysis (1959) · Zbl 0086.01104 [4] DOI: 10.1007/BFb0099440 · doi:10.1007/BFb0099440 [5] Cohn H., A second course in number theory (1962) · Zbl 0208.31501 [6] DOI: 10.1090/S0025-5718-1990-1023759-3 · doi:10.1090/S0025-5718-1990-1023759-3 [7] DOI: 10.1007/BF02942327 · Zbl 0718.11054 · doi:10.1007/BF02942327 [8] Jacobson M. J., Subexponential class group computation in quadratic orders (1999) [9] DOI: 10.1080/10586458.1995.10504322 · Zbl 0859.11057 · doi:10.1080/10586458.1995.10504322 [10] DOI: 10.1016/0022-314X(70)90006-5 · Zbl 0208.31103 · doi:10.1016/0022-314X(70)90006-5 [11] DOI: 10.2307/1968268 · JFM 54.0172.03 · doi:10.2307/1968268 [12] ”LiDIA: a C++ library for computational number theory” (1997) [13] DOI: 10.1112/plms/s2-27.1.358 · JFM 54.0206.02 · doi:10.1112/plms/s2-27.1.358 [14] Lukes R. F., Nieuw Arch. Wisk. (4) 13 (1) pp 113– (1995) [15] DOI: 10.1090/S0025-5718-96-00678-3 · Zbl 0852.11072 · doi:10.1090/S0025-5718-96-00678-3 [16] Mollin R. A., Quadratics (1996) · Zbl 0858.11001 [17] Roberts J., Lure of the integers (1992) [18] Shanks D., Math. Comp. 14 pp 320– (1960) [19] Shanks D., Analytic number theory (St. Louis, MO, 1972) pp 267– (1973) · doi:10.1090/pspum/024/9942 [20] DOI: 10.1090/S0025-5718-1988-0929558-3 · doi:10.1090/S0025-5718-1988-0929558-3 [21] Yamamoto Y., Osaka J. Math. 8 pp 261– (1971) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.