Kong, Lingbin; Wang, Junyu Multiple positive solutions for the one-dimensional \(p\)-Laplacian. (English) Zbl 0961.34012 Nonlinear Anal., Theory Methods Appl. 42, No. 8, 1327-1333 (2000). The existence of multiple positive solutions to the one-dimensional \(p\)-Laplacian \[ (( \Phi_{p} (u'))' + h(t) f(u) =0 \] subject to one of the following three pairs of nonlinear boundary conditions \[ u(0) -g_{1} (u'(0))=0, \quad u(1) +g_{2} (u'(1)) =0, \]\[ u(0) - g_{1} (u'(0)) =0, \quad u(1)=0, \]\[ u'(0) =0, \quad u(1) +g_{2} (u'(1)) =0, \] with \(\Phi_{p} (v) = |v|^{p-2} v\), \(p >1\), \(h(t)\) is a nonnegative measurable function on \((0,1)\), \(f(u) \) is a nonnegative continuous function on \([0, +\infty) \), and \(g_{1} (v) \) and \(g_{2} (v) \) are all continuous functions defined on \((- \infty, + \infty) \) , is studied. Results from papers of the reference are improved and generalized. Reviewer: Georgiev Lyuben Vulkov (Rousse) Cited in 54 Documents MSC: 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations Keywords:one-dimensional \(p\)-Laplacian; fixed-point index; multiplicity of positive solutions PDF BibTeX XML Cite \textit{L. Kong} and \textit{J. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 42, No. 8, 1327--1333 (2000; Zbl 0961.34012) Full Text: DOI OpenURL References: [1] Carcia-Huidobro, M.; Manasevich, R.; Schmitt, K., On principle eigenvalues of p-Laplacian-like operators, J. differential equations, 130, 235-246, (1996) · Zbl 0865.34066 [2] David, G.C.; Celius, A.M., Existence results for perturbations of the p-Laplacian, Nonlinear anal., 24, 409-418, (1995) · Zbl 0818.35029 [3] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985. · Zbl 0559.47040 [4] Erbe, L.H.; Hu, S.C.; Wang, H.Y., Multiple positive solutions of some boundary value problems, J. math. anal. appl., 184, 640-648, (1994) · Zbl 0805.34021 [5] Guo, Z.M., On the number of positive solutions for quasilinear elliptic eigenvalue problems, Nonlinear anal., 27, 229-247, (1996) · Zbl 0860.35090 [6] Kisik, H.; Lee, Y.H., Existence of multiple positive solutions of singular boundary value problems, Nonlinear anal., 28, 1429-1438, (1997) · Zbl 0874.34016 [7] Lian, W.C.; Wong, F.H.; Yeh, C.C., On the existence of positive solutions of nonlinear second order differential equations, Proc. amer. math. soc., 124, 1117-1126, (1996) · Zbl 0857.34036 [8] Liu, Z.L.; Li, F.Y., Multiple positive solutions of nonlinear two-point boundary value problem, J. math. anal. appl., 203, 610-625, (1996) · Zbl 0878.34016 [9] Ma, R.Y., On a conjecture concerning the multiplicity of positive solutions of elliptic problems, Nonlinear anal., 27, 775-780, (1996) · Zbl 0857.35045 [10] Ubilla, R., Multiplicity results for the 1-dimensional generalized p-Laplacian, J. math. anal. appl., 190, 611-623, (1995) · Zbl 0831.34032 [11] Wang, J.Y.; Gao, W.J., A singular boundary value problem for the one-dimensional p-Laplacian, J. math. anal. appl., 201, 851-866, (1996) · Zbl 0860.34011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.