Some algorithm for testing convexity of histogram. (English) Zbl 0961.41007

In various applications it is necessary to construct a smooth function that interpolates prescribed data and preserves some shape properties of them. Some problems are devoted to preserving interpolation of histogram. There is studied when that histogram is convex and the solution of such problem is the subject of this paper. A criterion of histogram convexity and also the algorithms based on this criterion are given.


41A15 Spline approximation
65D05 Numerical interpolation


Full Text: EuDML


[1] Beatson R. K., Wolkowics H.: Post-processing piecewise cubics for monotonicity. SIAM J. Numer. Anal. 26, 2 (1989), 480-502. · Zbl 0677.65011
[2] de. Boor C., Swartz B.: Piecewise monotone interpolation. Journal of Approximation Theory 21 (1977), 411-416. · Zbl 0367.41001
[3] Costantini P., Morandi R.: Monotone and convex spline interpolation. Calcolo 21 (1984), 281-294. · Zbl 0565.41006
[4] Costantini P.: On monotone and convex spline interpolation. Mathematics of Computing 46, 173 (1986), 203-214. · Zbl 0617.41015
[5] Eisenstst S. C., Jackson K. R., Lewis J. W.: The order of monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 22, 6 (1988), 1220-1237. · Zbl 0589.65008
[6] Fritsch F. N., Carlson R. E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238-246. · Zbl 0423.65011
[7] Hess W., Schmidt J. W.: Direct methods for constructing positive spline interpolation. Wavelets, Images and Surface Fitting, P. J. Laurent, A. Le Méhauté, L. L. Schumaker (eds.), 1994, 287-294. · Zbl 0815.65004
[8] Hess W., Schmidt J. W.: Convex C3 interpolation with quartic splines on threefold refined grids. Preprint TU Dresden, 1994, MATH-NM-12-1994.
[9] Hess W., Schmidt J. W.: Shape preserving C3 data interpolation and C2 histopolation with splines on threefold refined grids. Submitted to ZAMM, 1995.
[10] Lahtinen A.: Positive Hermite interpolation by quadratic splines. SIAM J. Numer. Anal. 24, 1 (1993), 223-233. · Zbl 0766.41011
[11] Mulansky B., Schmidt J. W.: Constructive methods in convex interpolation using quartic splines. Numerical Algorithms 12 1996, 111-124. · Zbl 0858.65009
[12] Sakai M., Usmani R. A.: A shape preserving area true approximation of histogram by rational splines. BIT 28 (1988), 329-339. · Zbl 0643.65005
[13] Schmidt J. W., Hess W.: Schwach verkoppelte ungleichungsysteme und konvexe Spline-Interpolation. Elem. Math. 39 (1984), 85-95. · Zbl 0518.65040
[14] Schmidt J. W., Hess W.: Positivity of cubic polynomials on intervals and positive spline interpolation. BIT 28 (1988), 340-352 · Zbl 0642.41007
[15] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines. Computing 44 (1990), 245-258. · Zbl 0721.65002
[16] Schmidt J. W., Hess W.: Shape preserving C2 -spline histopolation. Journal of Approximation Theory 75, 3 (1993), 325-345. · Zbl 0804.41012
[17] Schmidt J. W.: Staircase algorithm and construction of convex interpolants up to the continuity C3. Computers Mathematics Applications, P. Rózsa, J. W. Schmidt, B. A. Szabó (guest), 1995.
[18] Schmidt J. W.: Dual algorithms for convex approximations of histograms using cubic C1 splines. Numerical Analysis and Mathematical Modelling 29 (1994), 35-44. · Zbl 0805.65013
[19] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen. Oldenbourgh Verlag, 1990. · Zbl 0701.41015
[20] Yan Z.: Piecewise cubic curve fitting algorithm. Math. Comp. 49, 179 (1987), 203-213. · Zbl 0633.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.