On multiplication of some generalized functions. (English) Zbl 0961.46032

Summary: We show that if we extend the classical definition of a product of functions to a larger class of distributions, then for the distributions of the form \({1\over(\cdot-i0)^\alpha}\) and \({1\over (\cdot+i0)^\alpha}\), where \(\alpha\) is complex number, we get formulas: \[ {1\over (\cdot-i0)^\alpha}\cdot {1\over (\cdot- i0)^\beta}= {1\over (\cdot- i0)^{\alpha+\beta}} \] and \[ {1\over (\cdot+ i0)^\alpha}\cdot {1\over (\cdot+ i0)^\beta}= {1\over (\cdot+ i0)^{\alpha+ \beta}}, \] when \(\alpha\) and \(\beta\) are complex numbers, such that \(\text{Re }\alpha> {1\over 2}\) and \(\text{Re }\beta> {1\over 2}\).


46F10 Operations with distributions and generalized functions
46F12 Integral transforms in distribution spaces
44A15 Special integral transforms (Legendre, Hilbert, etc.)
44A20 Integral transforms of special functions
Full Text: EuDML


[1] Beltrami E. J., Wohlers M. R.: Distributions and the Boundary Values of Analytic Functions. Academic Press, New York and London, 1966. · Zbl 0186.19202
[2] Markushewich A. I.: Teorija analiticheskih funkcii. Gosudarstwiennoje Izdatielstwo Tiehniko-teorietichieskoj Litieratury, Moskwa, Leningrad 1950.
[3] Kierat W., Sztaba U.: The Generalized Fourier Transforms of Slowly Increasing Founctions. Demonstratio Mathematica, vol. XXX, No 2, 1997. · Zbl 0908.46026
[4] Gelfand I. M., Shilov G. E.: Generalized Functions. vol. 1. Academic Press, New York and London (1964).
[5] Reed M., Simon B.: Methods of Modern Math. Academic Press, New York, San Francisco, London, 1975. · Zbl 0308.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.