Kolář, Ivan Affine structure on Weil bundles. (English) Zbl 0961.58002 Nagoya Math. J. 158, 99-106 (2000). For every \(r\)th-order Weil functor \(T^A\), the author introduces the underlying \(k\)th-order Weil functors \(T^{A_k}\), \(k= 1,\dots, r-1\). He deduces that \(T^A M\to T^{A_{r-1}}M\) is an affine bundle for every manifold \(M\). Generalizing the classical concept of contact element by C. Ehresman, the author defines the bundle of contact elements of type \(A\) on \(M\) and describes some affine properties of this bundle. Reviewer: I.Kolář (Brno) Cited in 8 Documents MSC: 58A20 Jets in global analysis Keywords:Weil bundle; affine bundle; contact elements PDF BibTeX XML Cite \textit{I. Kolář}, Nagoya Math. J. 158, 99--106 (2000; Zbl 0961.58002) Full Text: DOI