Chen, Hegang; Cheng, Ching-Shui Theory of optimal blocking of \(2^{n-m}\) designs. (English) Zbl 0961.62066 Ann. Stat. 27, No. 6, 1948-1973 (1999). Summary: We define the blocking wordlength pattern of a blocked fractional factorial design by combining the wordlength patterns of treatment-defining words and block-defining words. The concept of minimum aberration can be defined in terms of the blocking wordlength pattern and provides a good measure of the estimation capacity of a blocked fractional factorial design. By blending techniques of coding theory and finite projective geometry, we obtain combinatorial identities that govern the relationship between the blocking wordlength pattern of a blocked \(2^{n-m}\) design and the split wordlength pattern of its blocked residual design. Based on these identities, we establish general rules for identifying minimum aberration blocked \(2^{n-m}\) designs in terms of their blocked residual designs. Using these rules, we study the structures of some blocked \(2^{n-m}\) designs with minimum aberration. Cited in 1 ReviewCited in 43 Documents MSC: 62K15 Factorial statistical designs 62K05 Optimal statistical designs 05B25 Combinatorial aspects of finite geometries 62B10 Statistical aspects of information-theoretic topics Keywords:fractional factorial design; linear code; MacWilliams identities; resolution; weight distribution; finite projective geometry; wordlength pattern × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BISGAARD, S. 1994. A note on the definition of resolution for blocked 2 designs. Technometrics 36 308 311. Z. k p JSTOR: · Zbl 0798.62082 · doi:10.2307/1269375 [2] BOX, G. E. P. and HUNTER, J. S. 1961. The 2 fractional factorial designs I. Technometrics 3 311 351. Z. · Zbl 0100.14406 · doi:10.2307/1266725 [3] BOSE, R. C. 1961. On some connections between the design of experiments and information theory. Bull. Inst. Internat. Statist. 38 257 271. Z. n l · Zbl 0102.14503 [4] CHEN, H. and HEDAYAT, A. S. 1996. 2 designs with weak minimum aberration. Ann. Statist. 24 2536 2548. Z. · Zbl 0867.62066 · doi:10.1214/aos/1032181167 [5] CHENG, C.-S. and MUKERJEE, R. 1997. Blocked regular fractional factorial designs with maximum estimation capacity. Unpublished manuscript. Z. · Zbl 1041.62064 [6] CHENG, C.-S., STEINBERG, D. M. and SUN, D. X. 1999. Minimum aberration and maximum estimation capacity. J. Roy. Statist. Soc. Ser. B 61 85 94. Z. k p JSTOR: · Zbl 0913.62072 · doi:10.1111/1467-9868.00164 [7] FRIES, A. and HUNTER, W. G. 1980. Minimum aberration 2 designs. Technometrics 22 601 608. Z. JSTOR: · Zbl 0453.62063 · doi:10.2307/1268198 [8] HINKELMANN, K. and KEMPTHORNE, O. 1994. Design and Analysis of Experiments. Wiley, New York. Z. · Zbl 1146.62054 · doi:10.1002/9780470191750 [9] LORENZEN, T. J. and WINCEK, M. A. 1992. Blocking is simply fractionation. GM Research Publication 7709. Z. [10] MACWILLIAMS, F. J. and SLOANE, N. J. A. 1977. The Theory of Error-Correcting Codes. NorthHolland, Amsterdam. Z. · Zbl 0369.94008 [11] PETERSON, W. W. and WELDON, E. J. 1972. Error-Correcting Codes. MIT Press. Z. · Zbl 0251.94007 [12] SITTER, R. R., CHEN, J. and FEDER, M. 1997. Fractional resolution and minimum aberration in blocking factorial designs. Technometrics 39 382 390. Z. JSTOR: · Zbl 0913.62073 · doi:10.2307/1271502 [13] SLOANE, N. J. A. and STUFKEN, J. 1996. A linear programming bound for orthogonal arrays with mixed levels. J. Statist. Planning Inference 56 295 305. Z. n m · Zbl 0873.05023 · doi:10.1016/S0378-3758(96)00025-0 [14] SUEN, C.-Y., CHEN, H. and WU, C. F. J. 1997. Some identities on q designs with application to minimum aberrations. Ann. Statist. 25 1176 1188. Z. n n p · Zbl 0898.62095 · doi:10.1214/aos/1069362743 [15] SUN, D. X., WU, C. F. J. and CHEN, Y. Y. 1997. Optimal blocking schemes for 2 and 2 designs. Technometrics 39 298 307. Z. n k JSTOR: · Zbl 0891.62055 · doi:10.2307/1271134 [16] TANG, B. and WU, C. F. J. 1996. Characterization of minimum aberration 2 designs in terms of their complementary designs. Ann. Statist. 24 2549 2559. DIVISION OF EPIDEMIOLOGY DEPARTMENT OF STATISTICS UNIVERSITY OF MINNESOTA UNIVERSITY OF CALIFORNIA · Zbl 0867.62068 · doi:10.1214/aos/1032181168 [17] MINNEAPOLIS, MINNESOTA 55454-1015 BERKELEY, CALIFORNIA 94720-3860 E-MAIL: chen h@epi.umn.edu E-MAIL: cheng@stat.berkeley.edu This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.