×

zbMATH — the first resource for mathematics

Reduction of chemical kinetics in air pollution modeling. (English) Zbl 0961.92038
Summary: We investigate the use of reduction techniques in air pollution modeling. The reduction of chemical kinetics is performed on the basis of a timescale analysis and of lumping. Lumping techniques are widely used in air pollution modeling and consist of replacing some pure chemical species by linear combinations of species. We focus here on the theoretical justification of such techniques. We propose an algorithm in order to build up lumped species in a systematic way. An application to three kinetic schemes coupled with diffusion is presented in a monodimensional case. This justifies the way we couple a reduced kinetic scheme with other processes.

MSC:
92E20 Classical flows, reactions, etc. in chemistry
92D40 Ecology
65C20 Probabilistic models, generic numerical methods in probability and statistics
Software:
ODEPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berkooz, G.; Holmes, P.; Lumbey, J.L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. rev. fluid mech., 539, (1993)
[2] Billette, E., Etude mathématique de schémas de cinétique chimique: application à des modèles de pollution, (1997)
[3] Carter, W.P.L., A detailed mechanism for the gas-phase atmospheric reactions of organic compounds, Atmos. environ., 24, 481, (1990)
[4] Coderch, M.; Willsky, A.; Sastry, S.S.; Castanon, D.A., Hierarchical aggregation of linear systems with multiple time scales, IEEE trans. autom. control, AC 28, (1983) · Zbl 0522.93009
[5] Deuflhard, P., Recent progress in extrapolation methods for Ode’s, SIAM review, 27, 505, (1985) · Zbl 0602.65047
[6] Deuflhard, P.; Hairer, E.; Zugck, J., One step and extrapolation method for differential-algebraic systems, Num. math., 51, 501, (1987) · Zbl 0635.65083
[7] R. Djouad, and, B. Sportisse, Solving differential-algebraic reduced systems arising in air pollution modelling, 2000, submitted.
[8] Duchêne, P.; Rouchon, P., Kinetic scheme reduction via geometric singular perturbation techniques, Chem. eng. sci., 51, (1996)
[9] Atmos. environ., 27A, 2591, (1993)
[10] Heard, A.C.; Pilling, M.J.; Tomlin, A.S., Mechanism reduction techniques applied to tropospheric chemistry, Atmos. environ., 32, 1059, (1998)
[11] Hertel, O.; Berkowicz, R.; Christensen, J., Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmos. environ., 27A, 2591, (1993)
[12] Hesstvedt, E.; Hov, O.; Isaksen, I.S.A., Qssas in air polution modelling: comparison of two numerical schemes for oxydant prediction, Int. J. chem. kinet., 10, 971, (1978)
[13] Hindmarsh, A.C., Scientific computing, chapter ODEPACK: A systematized collection of ODE solvers, (1983)
[14] Kim, J.; Cho, S.Y., Computation accuracy and efficiency of the time-splitting method in solving atmospheric transport-chemistry equations, Atmos. environ., 31, 2215, (1997)
[15] Lam, S.H., Reduced chemistry modelling and sensitivity analysis,, (1995)
[16] Lam, S.H.; Goussis, D.A., Understanding complex chemical kinetics with computational singular perturbation, Twenty-second symposium on combustion, (1988)
[17] Lam, S.H.; Goussis, D.A., The csp method for simplifying kinetics, Int. J. chem. kinet., 26, (1994)
[18] Li, G., A lumping analysis in mono and bimolecular reaction systems, Chem. eng. sci., 29, 1261, (1984)
[19] Li, G.; Rabitz, H., A general analysis of exact lumping in chemical kinetics, Chem. eng. sci., 44, 1413, (1989)
[20] Li, G.; Tomlin, A.S.; Rabitz, H.; Toth, J., Determination of approximate lumping schemes by a singular perturbation method, J. chem. phys., 99, (1993)
[21] Lowe, R.M.; Tomlin, A.S., The application of repro-modeling to a tropospheric chemistry model, Proceedings APMS’98, 423, (1998)
[22] Maas, U.; Pope, S.B., Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. flame, 88, 239, (1992)
[23] Makar, P.A.; Polaravapu, S.M., Analytic solutions for gas-phase chemical mechanism compression, Atmos. environ., 31, 1025, (1997)
[24] Mathur, R.; Young, J.O.; Schere, K.L.; Gipson, G.L., A comparison of numerical techniques for solution of atmospheric kinetic equations, Atmos. environ., 32, 1535, (1998)
[25] McRae, G.J.; Goodin, W.R.; Seinfeld, J.H., Numerical solution of the atmospheric diffusion equation for chemically reacting flows, J. comput. phys., 45, 1, (1982) · Zbl 0502.76098
[26] L. R. Petzold, and, W. Zhu, Model reduction for chemical kinetics: An optimization approach, Technical Report MN 55455, Dept. of Computer Science, Un. Minnesota, 1997.
[27] Sandu, A.; Verwer, J.G.; Van Loon, M.; Carmichael, G.; Potra, F.A.; Dabdub, D.; Seinfeld, J.H., Benchmarking stiff odes solvers for atmospheric chemistry problems i: implicit versus explicit, Atmos. environ., 31, 3151, (1997)
[28] Seinfeld, J.H., Atmospheric physics and chemistry of air pollution, (1985)
[29] Sportisse, B., Contribution à la modélisation des écoulements réactifs: réduction des modèles de cinétique chimique et simulation de la pollution atmosphérique, (1999)
[30] Sportisse, B., An analysis of operator splitting techniques in the stiff case, J. comput. phys., 161, 140, (2000) · Zbl 0953.65062
[31] B. Sportisse, and, P. Rouchon, Reduction of slow-fast chemistry with slow processes. Technical Report 98-129, CERMICS, 1999.
[32] Sun, Pu; Chock, D.; Winkler, S.L., An implicit-explicit hybrid solver for a system of stiff kinetic equations, J. comput. phys., 115, 515, (1994) · Zbl 0812.65061
[33] Tikhonov, A.N.; Vasileva, A.B.; Sveshnikov, A.G., Differential equations, (1985) · Zbl 0553.34001
[34] Tomlin, A.S.; Li, G.; Rabitz, H.; Toch, J., A general analysis of approximate nonlinear lumping in chemical kinetics. ii constrained lumping, J. chem. phys., 101, (1994)
[35] Turanyi, T.; Tomlin, A.S.; Pilling, M.J., On the error of the quasi-steady state approximation, J. phys. chem., 97, 163, (1993)
[36] V. Van Breusegem, and, G. Bastin, A singular perturbation approach to the reduced order dynamical modelling of reaction systems, Technical report, Université catholique de Louvain Belgique, 1993.
[37] Verwer, J.G.; Blom, J.; Van Loon, M.; Spee, E.J., A comparison of stiff odes solvers for atmospheric chemistry problems, Atmos. environ., 30, 49, (1996)
[38] Verwer, J.G.; Hundsdorfer, W.H.; Blom, J.G., Numerical time integration for air pollution models, Proceedings of the conference APMS’98, (1998)
[39] Vol’pert, A.I.; Hudjaev, S.I., Analysis in classes of discontinuous functions and equations of mathematical physics, (1985) · Zbl 0564.46025
[40] Wei, J.; Kuo, J.C.W., A lumping analysis in monomolecular reaction systems: analysis of approximately lumpable system, IEC fundam., 8, (1969)
[41] Wei, J.; Kuo, J.C.W., A lumping analysis in monomolecular reaction systems: analysis of the exactly lumpable system, IEC fundam., 8, (1969)
[42] Wilkinson, J.H., The algebraic eigenvalue problem, (1992) · Zbl 0202.15403
[43] Young, T.R.; Boris, J.P., A numerical technique for solving stiff ODE associated with the chemical kinetics of reaction flow problems, J. phys. chem., 81, 2424, (1977)
[44] Zlatev, Z., Computer treatment of large air pollution models, (1995) · Zbl 0852.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.