×

zbMATH — the first resource for mathematics

An approximation property of Pisot numbers. (English) Zbl 0962.11034
Given a positive real number \(q\) and an integer \(m\geq 1\), denote by \(\Lambda= \Lambda_m\) the set of all real numbers \(y\) having at least one representation of the form \[ y= \varepsilon_0+ \varepsilon_1q+ \varepsilon_2 q^2+\cdots+ \varepsilon_n q^n \] with some integer \(n> 0\) and \(\varepsilon_i\in \{-m, -m+1,\dots, -1,0,1,\dots, m-1,m\}\), and let \[ l^m(q)= \inf\{|y|: y\in \Lambda_m,\;y\neq 0\}. \] It is known that \(q\) is a Pisot number if and only if \(l^m(q)> 0\) for all \(m\). In this paper the authors determine formulae for \(l^m(A)\) for all \(m\), where \(A\) is the golden ratio \((\sqrt{5}+1)/2\).

MSC:
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11A67 Other number representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bugeaud, Y., On a property of Pisot numbers and related questions, Acta math. hungar., 73, 33-39, (1996) · Zbl 0923.11148
[2] Cassels, J.W.S., An introduction to Diophantine approximation, (1957), Cambridge University Press Cambridge · Zbl 0077.04801
[3] Erdős, P.; Joó, I.; Joó, M., On a problem of tamás varga, Bull. soc. math. France, 120, 507-521, (1992) · Zbl 0787.11002
[4] Erdős, P.; Joó, I.; Komornik, V., Characterization of the unique expansions 1=∑q−ni and related problems, Bull. soc. math. France, 118, 377-390, (1990) · Zbl 0721.11005
[5] Erdős, P.; Joó, I.; Komornik, V., On the sequence of numbers of the form ε0+ε1q+…+εnqn, εi∈0, 1, Acta arithmetica, 83, 201-210, (1998)
[6] Erdős, P.; Komornik, V., On developments in noninteger bases, Acta math. hungar., 79, 57-83, (1998) · Zbl 0906.11008
[7] Komornik, V.; Loreti, P., Unique developments in non-integer bases, Amer. math. monthly, 105, 636-639, (1998) · Zbl 0918.11006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.