# zbMATH — the first resource for mathematics

Location of zeros of families of trinomials. (Localisation de zéros de familles de trinômes.) (French) Zbl 0962.30002
Let $$n$$ be a natural number $$\varphi= (1+\sqrt 5)/2$$, and let $$a$$ be a real number. In this paper the authors obtain explicit estimations, by using three different methods, of some roots of the following families of trinomials: $f_{n,a}(z)= z^{n+ 1}- az+ a-1,$ $G_n(z)= (\varphi- 1) z^{n+1}- \varphi z^n+ 1$ and $H_n(z)= \varphi z^{n+ 1}-(\varphi- 1) z^n- 1.$ The first method is based on finding the approaching solutions of the equation. The second method is given by using the implicit function theorem, and the third method provides an expansion in hypergeometric series of solutions of a trinomial.
##### MSC:
 30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
##### Keywords:
trinomial; implicit function theorem; hypergeometric series
Full Text:
##### References:
 [1] Belardinelli ( G. ). - Fonctions hypergéométriques de plusieurs variables et résolution analytique des équations algébriques générales . Mémorial des Sciences Math. , n^\circ 145 , 1960 . Numdam | MR 121518 | Zbl 0097.05901 · Zbl 0097.05901 · eudml:192665 [2] Bieberbach ( L. ). - Lehrbuch der Funktionentheorie , vol. 1 , Elemente der Funktionentheorie , B.G. Teubner , Leipzig und Berlin , 1930 . JFM 56.0258.01 · JFM 56.0258.01 [3] Demailly ( J.-P. ). - Analyse numérique et équations différentielles , Presses Universitaires de Grenoble , 1991 . Zbl 0869.65041 · Zbl 0869.65041 [4] Dilcher ( K. ). - Zeros of certain cyclotomy-generated polynomials , Fibonacci Quart. , 29 , 1991 , 150 - 156 . MR 1119402 | Zbl 0726.11015 · Zbl 0726.11015 [5] Dilcher ( K. ), Nulton ( J.D. ) and Stolarski ( K.B. ). - The zeros of a certain family of trinomials , Glasgow Math. J. , 34 , 1992 , 55 - 74 . MR 1145632 | Zbl 0751.30007 · Zbl 0751.30007 · doi:10.1017/S0017089500008545 [6] Erdös ( P. ) and Turán ( P. ). - On the distribution of the roots of polynomials , Annals of Math. 51 , 1950 , 105 - 119 . MR 33372 | Zbl 0036.01501 · Zbl 0036.01501 · doi:10.2307/1969500 [7] Feller ( W. ). - An Introduction to Probability Theory and its Applications , vol. II , 2nd edition, J. Wiley and Sons , 1971 . Zbl 0219.60003 · Zbl 0219.60003 [8] Henrici ( P. ). - Applied and computational complex analysis , vol. 1 , Power series - integration - conformal mappings - location of zeros , J. Wiley and Sons , 1974 . MR 372162 | Zbl 0313.30001 · Zbl 0313.30001 [9] Hernane ( M.-O. ). - Localisation des zéros de polynômes intervenant en théorie du signal , Thèse de Magister , Université d’Alger , 1989 . [10] Horadam ( A.F. ) and Shannon ( A.G. ). - Cyclotomy-generated Polynomials of Fibonacci Type , In Fibonacci Numbers and Their Applications , 81 - 97 , edited by A.N. Philippou et al., Dordrecht : D. Reidel , 1986 . MR 857816 | Zbl 0593.12007 · Zbl 0593.12007 [11] Lacoume ( J.-L. ), Hanna ( C. ) et Nicolas ( S.C. ). - Etalonnage de l’analyse spectrale par la méthode du modèle autorégressif . Annales de Télécommunications , 36 , 1981 , 579 - 584 . Zbl 0474.94005 · Zbl 0474.94005 [12] Nicolas ( J.-L. ) et Schinzel ( A. ). - Localisation de zéros de polynômes intervenant en théorie du signal . In Cinquante ans de polynômes , ed. M. Langevin et M. Waldschmidt, Lecture Notes in Math. , n^\circ 1415 , Springer Verlag , 1990 , 167 - 179 . MR 1044112 | Zbl 0703.30004 · Zbl 0703.30004 [13] Whittaker ( E.T. ) and Watson ( G.N. ). - A course of modern analysis , 4th ed., Cambridg e at the University Press , 1935 . MR 1424469 | JFM 45.0433.02 · JFM 45.0433.02 [14] Zeng ( J. ). - Multinomial convolution polynomials , Discrete Math. , 160 , 1996 , 219 - 228 . MR 1417572 | Zbl 0860.05005 · Zbl 0860.05005 · doi:10.1016/0012-365X(95)00160-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.