×

zbMATH — the first resource for mathematics

3rd order differential invariants of coframes. (English) Zbl 0962.53012
The \(r\)-th order coframe bundle on an \(n\)-dimensional manifold \(X\) is the space of all invertible \(r\)-jets from \(X\) into \(\mathbb R^n\) with target \(0\in \mathbb R^n\). The authors deduce explicit formulae for a basis of third order invariants of coframes with values in left \(L^i_n\)-manifolds, where \(L^i_n\) is the \(i\)-th jet group in dimension \(i\)=1,2,3.
MSC:
53A55 Differential invariants (local theory), geometric objects
58A20 Jets in global analysis
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] CHAO, DAO QUI: 2nd Order Differential Invariants on the Bundle of Frames. CSc (=P\?D) Dissertation, Masaryk Univ., Brno (Czech Republic), 1991.
[2] DIEUDONNÉ J.: Treatise on Analysis, Vol. III. Academic Press, New York-London, 1972. · Zbl 0268.58001
[3] GARCIA PÉREZ P. L.-MASQUE J. M.: Differential invariants on the bundles of linear frames. J. Georn. Phys. 7 (1990), 395-418. · Zbl 0764.53017
[4] KOLÁŘ I.: On the prolongations of geometric object fields. An. Ştiinţ. Univ. ”Al. I. Cuza” Iaşi Secţ. I a Mat. 17 (1971), 437-446. · Zbl 0366.53037
[5] KOLÁŘ I.-MICHOR P.-SLOVÁK J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. · Zbl 0782.53013
[6] KRUPKA D.: A setting for generally invariant Lagrangian structures in tensor bundles. Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 22 (1974), 967-972. · Zbl 0305.58002
[7] KRUPKA D.: Elementary theory of differential invariants. Arch. Math. (Brno) 14 (1978), 207-214. · Zbl 0428.58002
[8] KRUPKA D.: Local invariants of a linear connection. Differential Geometry, Budapest (Hungary), 1979. Colloq. Math. Soc. János Bolyai 31, North Holland, Amsterdam, 1982, pp. 349-369. · Zbl 0513.53038
[9] KRUPKA D.-JANYŠKA J.: Lectures on Differential Invariants. Brno University, Brno (Czech Republic), 1990. · Zbl 0752.53004
[10] KRUPKA D.-MIKOLÁŠOVÁ V.: On the uniqueness of some differential invariants: \(d,\, [\, ,\, ],\, \bigtriangledown\). Czechoslovak Math. J. 34 (1984), 588-597. · Zbl 0571.53009
[11] KRUPKA M.: Natural Operators on Vector Fields and Vector Distributions. Doctoral Dissertation, Masaryk University, Brno (Czech Republic), 1995.
[12] KRUPKA M.: Anti-holonomic jets and the Lie bracket. Arch. Math. (Brno) 34 (1998), 311 319. · Zbl 0915.58005
[13] NIJENHUIS A.: Natural bundles and their general properties. Differential Geometry (In honor of K. Yano), Kinokuniya, Tokyo, 1972, pp. 317-334. · Zbl 0246.53018
[14] THOMAS T. Y.: The Differential Invariants of Generalized Spaces. Cambridge University Press, Cambridge, 1934. · Zbl 0009.08503
[15] WEYL H.: The Classical Groups. Princeton University Press, Princeton, NJ, 1946. · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.