Abarenkova, N. I.; Izergin, A. G.; Pronko, A. G. Correlators of densities in the one-dimensional Hubbard model. (English. Russian original) Zbl 0962.82005 J. Math. Sci., New York 101, No. 5, 3377-3384 (2000); translation from Zap. Nauchn. Semin. POMI 249, 7-19 (1997). Summary: The one-dimensional Hubbard model with infinitely strong repulsion between electrons is considered. Explicit expressions for the two-point correlators of local densities (dependent on time, temperature, the chemical potential, and the external field) are obtained. MSC: 82B10 Quantum equilibrium statistical mechanics (general) 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics Keywords:Hubbard model; two-point corrlators; local densities × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. Hubbard,Proc. Roy. Soc.,276, 238 (1963). · doi:10.1098/rspa.1963.0204 [2] V. E. Korepin and F. H. L. Eßler (editors),Exactly Solvable Models of Strongly Correlated Electrons, World Scientific, Singapore (1994). · Zbl 1066.82506 [3] C. N. Yang, ”Some exact results for the many body problem in one dimension with repulsive deltafunction interaction,”Phys. Rev. Lett.,19, 1312–1315 (1967). · Zbl 0152.46301 · doi:10.1103/PhysRevLett.19.1312 [4] M. Gaudin, ”Un système à une dimension de fermions en interaction,”Phys. Lett.,24 A, 55–56 (1967). [5] E. H. Lieb and F. Y. Wu, ”Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension,”Phys. Rev. Lett.,20, 1445–1448 (1968). · doi:10.1103/PhysRevLett.20.1445 [6] H. Frahm and V. E. Korepin, ”Correlation functions of the one-dimensional Hubbard model in a magnetic field,”Phys. Rev.,43 B, 5653–5662 (1991). [7] A. G. Izergin and A. G. Pronko, ”Correlators in the one-dimensional two-component Bose and Fermi gases,”Phys. Lett.,236 A, 445–454 (1997). · Zbl 0969.82502 [8] A. G. Izergin and A. G. Pronko, ”Temperature correlators in the two-component one-dimensional gas,”Nucl. Phys.,520 B, 594–632 (1998). · Zbl 0947.82006 · doi:10.1016/S0550-3213(98)00182-5 [9] A. Mielke, ”The one-dimensional Hubbard model for large or infiniteU,”J. Stat. Phys.,62, 509–528 (1991). · doi:10.1007/BF01017970 [10] S. Sarkar, ”The supersymmetrict-J model in one dimension,”J. Phys. A: Math. Gen.,24, 1137–1151 (1991). · doi:10.1088/0305-4470/24/5/026 [11] F. Colomo, A. G. Izergin, V. E. Korepin, and V. Tognetti, ”Temperature correlation functions of the XXO Heisenberg chain. I,”Theor. Math. Phys.,94, 11–38 (1993). · doi:10.1007/BF01016992 [12] Th. Niemeier,Physica,36, 377 (1967). · doi:10.1016/0031-8914(67)90235-2 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.