×

Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables. (Arakelov geometry of toric varieties and integrable line bundles). (French) Zbl 0963.14009

The main object of the monograph under review is an arithmetic variety \(X\), that is a scheme over \(S= \text{Spec}(O_K)\) (\(K\) is a number field) which is assumed flat, projective, integral, and regular. One of general goals is to extend the intersection theory of H. Gillet and C. Soulé [Publ. Math., Inst. Hautes Étud. Sci. Publ. Math. 72, 93-174 (1990; Zbl 0741.14012)] so that in the Arakelov geometry one could consider linear bundles equipped with a metric which is not necessarily \(C^{\infty }\). To be more precise, following S. Zhang [J. Algebr. Geom. 4, No. 2, 281-300 (1995; Zbl 0861.14019)], the author introduces the notion of an admissible line bundle (generated by its global sections and equipped with a positive metric which can be uniformly approximated by positive \(C^{\infty }\) metrics), and, more generally, of an integrable line bundle (the difference of two admissible line bundles). Further, the author introduces a new notion of a generalized differential form, and for an integrable line bundle defines the first arithmetic Chern class which turns out to be a generalized differential form in the sense of this new definition. The author defines a product of such forms using a product theory for positive currents developed by E. Bedford and B. A. Taylor [Acta Math. 149, 1-40 (1982; Zbl 0547.32012)] and J.-P. Demailly [in: Complex Analysis and Geometry, Univ. Ser. Math. 115-193 (1993; Zbl 0792.32006)]. As a result, the author constructs a generalized Chow ring containing the usual one, with pairing degree functions continuing those of Gillet–Soulé and with height function compatible with that of Zhang.
The author’s next goal consists in applying the developed theory to a particular class of arithmetic varieties, namely, to smooth projective toric varieties which are among favorite proving grounds in many problems of algebraic geometry. First of all recall that the Chow ring of such a variety is classically known to be generated by the first Chern classes of linear bundles. As to the arithmetic Chow ring, one immediately encounters a problem: Any “canonical” (i.e. functorial in \(L\)) metric on a linear bundle \(L\) is, in general, not \(C^{\infty }\). This is in fact one of motivations for developing a general intersection theory described above.
Thus, according to this general approach, given a toric variety over the integers equipped with a line bundle \(\overline L\) and its canonical metric, the author defines a current \(c_1(\overline L)\) replacing the usual first Chern class. Moreover, an explicit formula for the generalized product of such currents is given, and a vanishing theorem is proved. These results lead not only to a correct arithmetic analogue of the above mentioned classical result on generating the Chow ring by the first Chern classes, but also to a simple algorithm for computing the mixed volume of convex polytopes.
Furthermore, a more detailed study of heights on arithmetic toric varieties yields some more interesting consequences, namely a relationship between the canonical height of a hypersurface in a toric variety and the Mahler measure of the corresponding polynomial, and an arithmetic analogue of the Bernstein-Koushnirenko theorem on estimating the number of common zeroes of Laurent polynomials in terms of the mixed volumes of Newton polytopes.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
11D75 Diophantine inequalities
11G50 Heights

References:

[1] BEDFORD E. et TAYLOR B.A. - A new capacity for plurisubharmonic functions , Acta math. 149, ( 1982 ), p. 1-41. MR 84d:32024 | Zbl 0547.32012 · Zbl 0547.32012 · doi:10.1007/BF02392348
[2] BATYREV V.V. et TSCHINKEL Y. - Rational Points of Bounded Height on Compactifications of Anisotropic Tori , Internat. Math. Res. Notices 12, ( 1995 ), p. 591-635. MR 97a:14021 | Zbl 0890.14008 · Zbl 0890.14008 · doi:10.1155/S1073792895000365
[3] BOST J.-B. , GILLET H. et SOULÉ C. - Heights of projective varieties and positive Green forms , J. Amer. Math. Soc. 7, ( 1994 ), p. 903-1027. MR 95j:14025 | Zbl 0973.14013 · Zbl 0973.14013 · doi:10.2307/2152736
[4] BOYD D.W. - Speculations concerning the range of Mahler’s measure , Canad. Math. Bull. 24, ( 1981 ), p. 453-469. MR 83h:12002 | Zbl 0474.12005 · Zbl 0474.12005 · doi:10.4153/CMB-1981-069-5
[5] BRYLINSKI J.-L. - Éventails et variétés toriques , Séminaire sur les singularités des surfaces, Centre de Math. de l’École Polytechnique, Palaiseau 1976 - 1977 , Lectures Notes in Math. 777, Springer-Verlag ( 1980 ). Numdam | Zbl 0431.14013 · Zbl 0431.14013
[6] DANILOV V.I. - The geometry of toric varieties , Russian Math. Surveys 33, ( 1978 ), p. 97-154; Uspekhi Mat. Nauk. 33, ( 1978 ), p. 85-134. MR 80g:14001 | Zbl 0425.14013 · Zbl 0425.14013 · doi:10.1070/RM1978v033n02ABEH002305
[7] DEMAILLY J.-P. - Courants positifs et théorie de l’intersection , Gaz. Math. 53, ( 1992 ), p. 131-158. MR 93f:32012 | Zbl 0771.32010 · Zbl 0771.32010
[8] DEMAILLY J.-P. - Monge-Ampère operators, Lelong numbers and intersection theory , in Complex Analysis and Geometry, Univ. Ser. Math., ( 1993 ), p. 115-193. MR 94k:32009 | Zbl 0792.32006 · Zbl 0792.32006
[9] DEMAILLY J.-P. - Complex analytic and algebraic geometry, volume I , à paraître in Grundlehren für Math. Wissenschaften, Springer-Verlag.
[10] DEMAZURE M. - Sous-groupes algébriques de rang maximum du groupe de Cremona , Ann. Sci. École Norm. Sup. (4) 3, ( 1970 ), p. 507-588. Numdam | MR 44 #1672 | Zbl 0223.14009 · Zbl 0223.14009
[11] DENINGER C. - Deligne periods of mixed motives, K-theory and the entropy of certain \Bbb Zn-actions , J. Amer. Math. Soc. 10, ( 1997 ), p. 259-281. MR 97k:11101 | Zbl 0913.11027 · Zbl 0913.11027 · doi:10.1090/S0894-0347-97-00228-2
[12] GROTHENDIECK A. et DIEUDONNÉ J. - Éléments de géométrie algébrique II, Étude globale élémentaire de quelques classes de morphismes , Inst. Hautes Études Sci. Publ. Math. 8, ( 1961 ). Numdam | Zbl 0118.36206 · Zbl 0118.36206 · doi:10.1007/BF02684778
[13] GROTHENDIECK A. et DIEUDONNÉ J. - Éléments de géométrie algébrique III, Étude cohomologique des faisceaux cohérents , Inst. Hautes Études Sci. Publ. Math. 11, ( 1961 ), et 17, ( 1963 ). Numdam | Zbl 0122.16102 · Zbl 0122.16102
[14] EHLERS F. - Eine klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten , Math. Ann. 218, ( 1975 ), p. 127-156. MR 58 #11502 | Zbl 0301.14003 · Zbl 0301.14003 · doi:10.1007/BF01370816
[15] FALTINGS G. - Diophantine approximation on Abelian varieties , Ann. of Math. 133, ( 1991 ), p. 549-576. MR 93d:11066 | Zbl 0734.14007 · Zbl 0734.14007 · doi:10.2307/2944319
[16] FALTINGS G. et CHAI C.-L. - Degeneration of abelian varieties , Springer-Verlag ( 1990 ). MR 92d:14036 | Zbl 0744.14031 · Zbl 0744.14031
[17] FORNÆSS J. E. et SIBONY N. - Complex dynamics in higher dimension II , in Modern methods in complex analysis (Princeton, NJ, 1992 ), Ann. of Math. Stud. 137, ( 1995 ), p. 135-182. Zbl 0847.58059 · Zbl 0847.58059
[18] FORNÆS J. E. et SIBONY N. - Oka’s inequality for currents and applications , Math. Ann. 301, ( 1995 ), p. 399-419. MR 96k:32013 | Zbl 0832.32010 · Zbl 0832.32010 · doi:10.1007/BF01446636
[19] Fulton W. - Intersection Theory , Springer-Verlag ( 1984 ). MR 85k:14004 | Zbl 0541.14005 · Zbl 0541.14005
[20] FULTON W. - Introduction to toric varieties , Princeton University Press ( 1993 ). MR 94g:14028 | Zbl 0813.14039 · Zbl 0813.14039
[21] FULTON W. et STURMFELS B. - Intersection theory on toric varieties , Topology 36, ( 1997 ), p. 335-353. MR 97h:14070 | Zbl 0885.14025 · Zbl 0885.14025 · doi:10.1016/0040-9383(96)00016-X
[22] GILLET H. - Riemann-Roch theorems for higher algebraic K-theory , Adv. in Math. 40 no 3, ( 1981 ), p. 203-289. MR 83m:14013 | Zbl 0478.14010 · Zbl 0478.14010 · doi:10.1016/S0001-8708(81)80006-0
[23] GILLET H. et SOULÉ C. - Arithmetic intersection theory , Inst. Hautes Études Sci. Publ. Math. 72, ( 1990 ), p. 94-174. Numdam | MR 92d:14016 | Zbl 0741.14012 · Zbl 0741.14012 · doi:10.1007/BF02699132
[24] GILLET H. et SOULÉ C. - Characteristic classes for algebraic vector bundles with Hermitian metrics I, II , Ann. of Math. 131 ( 1990 ), p. 163-203 et p. 205-238. MR 91m:14032a | Zbl 0715.14018 · Zbl 0715.14018 · doi:10.2307/1971512
[25] GORESKY M. et MACPHERSON R. - On the topology of algebraic torus actions , in Algebraic groups Utrecht 1986 , Lecture Notes in Math. 1271, Springer-Verlag ( 1987 ), p. 73-90. MR 89a:14064 | Zbl 0633.14025 · Zbl 0633.14025
[26] KEMPF G. , KNUDSEN F. , MUMFORD D. ET SAINT-DONAT B. - Toroidal Embeddings I , Lecture Notes in Math. 339, Springer-Verlag ( 1973 ). MR 49 #299 | Zbl 0271.14017 · Zbl 0271.14017
[27] KOUSHNIRENKO A.G. - Polyhèdres de Newton et nombres de Milnor , Invent. math. 32, ( 1976 ), p. 1-31. Zbl 0328.32007 · Zbl 0328.32007 · doi:10.1007/BF01389769
[28] KOUSHNIRENKO A.G. - Newton polytopes and the Bézout theorem , Functional Analysis and its applications vol. 10, n^\circ 3, ( 1976 ), p. 233-235. Zbl 0341.32001 · Zbl 0341.32001 · doi:10.1007/BF01075534
[29] LANG S. - Algebraic Number Theory , Springer-Verlag ( 1970 ). MR 44 #181 | Zbl 0601.12001 · Zbl 0601.12001
[30] LAURENT M. - Sur le théorème de Bézout , Prépublication LMD Luminy, 1994 .
[31] LELONG P. - Intégration sur un ensemble analytique complexe , Bull. Soc. Math. France 85, ( 1957 ), p. 239-262. Numdam | MR 20 #2465 | Zbl 0079.30901 · Zbl 0079.30901
[32] LELONG P. - Fonctions plurisousharmoniques de croissance logarithmique ; extension du résultant des polynômes , C. R. Acad. Sci. Paris Sér. I Math. 309, ( 1989 ), p. 315-320. MR 91c:32012 | Zbl 0702.32016 · Zbl 0702.32016
[33] LELONG P. - Mesure de Mahler des polynômes et majoration par convexité , C. R. Acad. Sci. Paris Sér. I Math. 315, ( 1992 ), p. 139-142. MR 94a:32026 | Zbl 0763.32003 · Zbl 0763.32003
[34] MAILLOT V. - Un calcul de Schubert arithmétique , Duke Math. J. 80, ( 1995 ), p. 195-221. Article | MR 97h:14039 | Zbl 0867.14024 · Zbl 0867.14024 · doi:10.1215/S0012-7094-95-08008-9
[35] MAILLOT V. - Un théorème de Bernstein-Koushnirenko arithmétique , C. R. Acad. Sci. Paris Sér. I Math. 323, ( 1996 ), p. 977-980. MR 98c:14017 | Zbl 0870.14015 · Zbl 0870.14015
[36] MAILLOT V. - Géométrie d’Arakelov des grassmanniennes, des variétés toriques et de certaines hypersurfaces , Thèse, juin 1997 .
[37] ODA T. - Convex Bodies and Algebraic Geometry , Springer-Verlag, ( 1988 ). MR 88m:14038 | Zbl 0628.52002 · Zbl 0628.52002
[38] RICHBERG R. - Stetige streng pseudokonvexe Funktionen , Math. Ann. 175, ( 1968 ), p. 257-286. MR 36 #5386 | Zbl 0153.15401 · Zbl 0153.15401 · doi:10.1007/BF02063212
[39] SMYTH C.J. - On measures of polynomials in several variables , Bull. Austral. Math. Soc. 23, ( 1981 ), p. 49-63. MR 82k:10074 | Zbl 0442.10034 · Zbl 0442.10034 · doi:10.1017/S0004972700005773
[40] ZHANG S.S. - Small Points and Adelic Metrics , J. Algebraic Geom. 4, ( 1995 ), p. 281-300. MR 96e:14025 | Zbl 0861.14019 · Zbl 0861.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.