×

Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits. (English) Zbl 0963.34029

Summary: Experimental results on the impulsive synchronization of two kinds of chaotic circuits, namely, Chua’s oscillator and a hyperchaotic circuit, are presented. To impulsively synchronize two Chua oscillators, synchronization impulses sampled from one state variable of the driving circuit are transmitted to the driven circuit. To impulsively synchronize two hyperchaotic circuits, synchronizing impulses sampled from two signals of the driving circuit are sent to the driven circuit.
The experimental results show that the accuracy of impulsive synchronization depends on both the period and the width of the impulse. The ratio between the impulse width and impulse period for “almost-identical” synchronization increases as the impulse period increases. The robustness of impulsive synchronization to additive noise is also experimentally studied. For sufficiently short impulse periods, no significant differences are observed between impulsive and continuous synchronizations. The performance of chaotic spread spectrum communication systems based on impulsive synchronization is also studied experimentally.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1142/S0218127492000811 · Zbl 0875.94133 · doi:10.1142/S0218127492000811
[2] DOI: 10.1142/S0218126693000071 · doi:10.1142/S0218126693000071
[3] Dedieu H., IEEE Trans. Circuits Syst. CAS-40(10) pp 643– (1993)
[4] DOI: 10.1142/S0218127493000374 · Zbl 0870.94002 · doi:10.1142/S0218127493000374
[5] Itoh M., IEICE Trans. Fundamentals E78-A(3) pp 285– (1995)
[6] DOI: 10.1142/S0218127499000080 · Zbl 0954.94001 · doi:10.1142/S0218127499000080
[7] DOI: 10.1142/S0218127492000823 · Zbl 0875.94134 · doi:10.1142/S0218127492000823
[8] DOI: 10.1142/S021812749600151X · Zbl 1298.94094 · doi:10.1142/S021812749600151X
[9] DOI: 10.1109/TCS.1986.1085862 · doi:10.1109/TCS.1986.1085862
[10] DOI: 10.1142/S0218127498000437 · Zbl 0941.34507 · doi:10.1142/S0218127498000437
[11] DOI: 10.1142/S0218127492000562 · Zbl 0870.94011 · doi:10.1142/S0218127492000562
[12] DOI: 10.1016/0375-9601(84)90009-4 · doi:10.1016/0375-9601(84)90009-4
[13] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[14] DOI: 10.1142/S0218127497000443 · Zbl 0925.93374 · doi:10.1142/S0218127497000443
[15] DOI: 10.1142/S0218127497001886 · Zbl 1126.94304 · doi:10.1142/S0218127497001886
[16] Yang T., Trans. Circuits Syst. (1997)
[17] DOI: 10.1142/S0218127498001327 · doi:10.1142/S0218127498001327
[18] DOI: 10.1142/S0218127498001704 · Zbl 0954.94002 · doi:10.1142/S0218127498001704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.