×

The eigenstructure of the Bernstein operator. (English) Zbl 0963.41006

The authors determine the eigenvalues and eigenfunctions of the Bernstein operator \(B_n\), the latter are, of course, \(n+1\) polynomials of degrees \(k=0,\dots,n\). They show that the \(k\)th eigen-polynomial \(p^{(n)}_k\) has \(k\) simple zeros in \([0,1]\) and describe \(\lim_{n\to\infty}p^{(n)}_k\), for fixed \(k\). Applications are given to iterates of the Bernstein operators, and to Bernstein quasi-interpolants.

MSC:

41A10 Approximation by polynomials
41A36 Approximation by positive operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ando, T., Totally positive matrices, Linear Algebra Appl., 90, 165-219 (1987) · Zbl 0613.15014
[2] Berens, H.; DeVore, R., A characterisation of Bernstein polynomials, (Cheney, E. W., Approximation Theory III (1980), Academic Press: Academic Press New York), 213-219 · Zbl 0483.41016
[3] Berens, H.; Xu, Y., On Bernstein-Durrmeyer polynomials with Jacobi weights, (Chui, C. K., Approximation Theory and Functional Analysis (1991), Academic Press: Academic Press Boston), 25-46 · Zbl 0715.41013
[4] Butzer, P. L., Linear combinations of Bernstein polynomials, Canad. J. Math., 5, 559-567 (1953) · Zbl 0051.05002
[6] Derriennic, M. M., Sur l’approximation de fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifiés, J. Approx. Theory, 31, 325-343 (1981) · Zbl 0475.41025
[7] Ditzian, Z.; Totik, V., Moduli of Smoothness (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0666.41001
[8] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0052.29502
[9] Gonska, H. H.; Long Zhou, Xin, Approximation theorems for the iterated Boolean sums of Bernstein operators, J. Comput. Appl. Math., 53, 21-31 (1994) · Zbl 0816.41020
[10] Karlin, S., Total Positivity (1968), Stanford Univ. Press: Stanford Univ. Press Stanford
[11] Karlin, S.; Ziegler, Z., Iteration of positive approximation operators, J. Approx. Theory, 3, 310-339 (1970) · Zbl 0199.44702
[12] Kelisky, R. P.; Rivlin, T. J., Iterates of Bernstein polynomials, Pacific J. Math., 21, 511-520 (1967) · Zbl 0177.31302
[13] Lorentz, G. G., Bernstein Polynomials (1953), Toronto Press: Toronto Press Toronto
[14] Micchelli, C., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8, 1-18 (1973) · Zbl 0258.41012
[15] Pinkus, A., Spectral properties of totally positive kernels and matrices, (Gasca, M.; Micchelli, C. A., Total Positivity and Its Applications (1996), Kluwer Academic: Kluwer Academic Dordrecht), 477-511 · Zbl 0891.45001
[16] Sablonnière, P., A family of Bernstein quasi-interpolants on [0, 1], Approx. Theory Appl., 8, 62-76 (1992) · Zbl 0772.41024
[17] Sevy, J. C., Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials, J. Approx. Theory, 80, 267-271 (1995) · Zbl 0823.41022
[18] da Silva, M. R., Nonnegative order iterates of Bernstein polynomials and their limiting semigroup, Portugal. Math., 42, 225-248 (1985) · Zbl 0562.41007
[19] Wenz, H.-J., On the limits of (linear combinations of) iterates of linear operators, J. Approx. Theory, 89, 219-237 (1997) · Zbl 0871.41014
[20] Widder, D. V., The Laplace Transform (1941), Princeton University Press: Princeton University Press Princeton · Zbl 0060.24801
[21] Zhou, D. X., On smoothness characterized by Bernstein type operators, J. Approx. Theory, 81, 303-315 (1995) · Zbl 0849.41014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.