zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The eigenstructure of the Bernstein operator. (English) Zbl 0963.41006
The authors determine the eigenvalues and eigenfunctions of the Bernstein operator $B_n$, the latter are, of course, $n+1$ polynomials of degrees $k=0,\dots,n$. They show that the $k$th eigen-polynomial $p^{(n)}_k$ has $k$ simple zeros in $[0,1]$ and describe $\lim_{n\to\infty}p^{(n)}_k$, for fixed $k$. Applications are given to iterates of the Bernstein operators, and to Bernstein quasi-interpolants.

MSC:
41A10Approximation by polynomials
41A36Approximation by positive operators
WorldCat.org
Full Text: DOI
References:
[1] Ando, T.: Totally positive matrices. Linear algebra appl. 90, 165-219 (1987) · Zbl 0613.15014
[2] Berens, H.; Devore, R.: A characterisation of Bernstein polynomials. Approximation theory III, 213-219 (1980) · Zbl 0483.41016
[3] Berens, H.; Xu, Y.: On Bernstein--Durrmeyer polynomials with Jacobi weights. Approximation theory and functional analysis, 25-46 (1991) · Zbl 0715.41013
[4] Butzer, P. L.: Linear combinations of Bernstein polynomials. Canad. J. Math. 5, 559-567 (1953) · Zbl 0051.05002
[5] S. Cooper, and, S. Waldron, The diagonalisation of the multivariate Bernstein operator, manuscript, 1999. · Zbl 1020.41008
[6] Derriennic, M. M.: Sur l’approximation de fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifiés. J. approx. Theory 31, 325-343 (1981) · Zbl 0475.41025
[7] Ditzian, Z.; Totik, V.: Moduli of smoothness. (1987)
[8] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G.: Higher transcendental functions. (1953) · Zbl 0051.30303
[9] Gonska, H. H.; Zhou, Xin Long: Approximation theorems for the iterated Boolean sums of Bernstein operators. J. comput. Appl. math. 53, 21-31 (1994) · Zbl 0816.41020
[10] Karlin, S.: Total positivity. (1968) · Zbl 0219.47030
[11] Karlin, S.; Ziegler, Z.: Iteration of positive approximation operators. J. approx. Theory 3, 310-339 (1970) · Zbl 0199.44702
[12] Kelisky, R. P.; Rivlin, T. J.: Iterates of Bernstein polynomials. Pacific J. Math. 21, 511-520 (1967) · Zbl 0177.31302
[13] Lorentz, G. G.: Bernstein polynomials. (1953)
[14] Micchelli, C.: The saturation class and iterates of the Bernstein polynomials. J. approx. Theory 8, 1-18 (1973) · Zbl 0258.41012
[15] Pinkus, A.: Spectral properties of totally positive kernels and matrices. Total positivity and its applications, 477-511 (1996) · Zbl 0891.45001
[16] Sablonnière, P.: A family of Bernstein quasi-interpolants on [0, 1]. Approx. theory appl. 8, 62-76 (1992)
[17] Sevy, J. C.: Lagrange and least-squares polynomials as limits of linear combinations of iterates of Bernstein and Durrmeyer polynomials. J. approx. Theory 80, 267-271 (1995) · Zbl 0823.41022
[18] Da Silva, M. R.: Nonnegative order iterates of Bernstein polynomials and their limiting semigroup. Portugal math. 42, 225-248 (1985) · Zbl 0562.41007
[19] Wenz, H. -J.: On the limits of (linear combinations of) iterates of linear operators. J. approx. Theory 89, 219-237 (1997) · Zbl 0871.41014
[20] Widder, D. V.: The Laplace transform. (1941) · Zbl 0063.08245
[21] Zhou, D. X.: On smoothness characterized by Bernstein type operators. J. approx. Theory 81, 303-315 (1995) · Zbl 0849.41014