×

Balance and orthogonality in designs for mixed classification models. (English) Zbl 0963.62059

Summary: A classification model is easiest to analyze when it has a balanced design. Many of the nice features of balanced designs are retained by error-orthogonal designs, which were introduced by the authors in J. Stat. Plann. Inference 73, No. 1-2, 373-389 (1998; Zbl 0933.62069). The present paper defines a kind of “partially balanced” design and shows that this partial balance is sufficient to ensure the error-orthogonality of a mixed classification model. Results are provided that make the partial balance condition easy to check. It is shown that for a maximal-rank error-orthogonal design, the Type I sum of squares for a random effect coincides with the Type II sum of squares.

MSC:

62J10 Analysis of variance and covariance (ANOVA)
62K99 Design of statistical experiments

Citations:

Zbl 0933.62069
Full Text: DOI

References:

[1] BROWN, K. G. 1983. Sub-balanced data and the mixed analysis of variance. J. Amer. Statist. Assoc. 78 162 167. JSTOR: · Zbl 0501.62068 · doi:10.2307/2287124
[2] HOUTMAN, A. M. and SPEED, T. P. 1983. Balance in designed experiments with orthogonal block structure. Ann. Math. Statist. 42 1069 1085. Z. · Zbl 0566.62065
[3] NELDER, J. A. 1965. The analysis of randomized experiments with orthogonal block structure I. Block structure and the null analysis of variance. Proc. Roy. Soc. London Ser. A 273 147 162. Z. · Zbl 0124.10703 · doi:10.1098/rspa.1965.0012
[4] PUKELSHEIM, F. 1981. On the existence of unbiased nonnegative estimates of variance covariance components. Ann. Statist. 9 293 299. Z. · Zbl 0486.62066 · doi:10.1214/aos/1176345395
[5] PUKELSHEIM, F. 1993. Optimal Design of Experiments. Wiley, New York. Z. · Zbl 0834.62068
[6] RAO, C. R. and KLEFFE, J. 1988. Estimation of Variance Components and Applications. NorthHolland, New York. Z. · Zbl 0645.62073
[7] SEELY, J. 1971. Quadratic subspaces and completeness. Ann. Math. Statist. 42 710 721. Z. · Zbl 0249.62067 · doi:10.1214/aoms/1177693420
[8] SEELY, J. 1972. Completeness for a family of multivariate normal distributions. Ann. Math. Statist. 43 1644 1647. Z. · Zbl 0257.62018 · doi:10.1214/aoms/1177692396
[9] SEELY, J. 1977. Minimal sufficient statistics and completeness for multivariate normal families. Sankhya Ser. A 39 170 185. Z. · Zbl 0409.62004
[10] SEIFERT, B. 1979. Optimal testing for fixed effects in general balanced mixed classification models. Math. Operationsforsch. Statist. Ser. Statist. 10 237 255. Z. · Zbl 0415.62052 · doi:10.1080/02331887908801481
[11] SZATROWSKI, T. H. 1980. Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances. Ann. Statist. 8 802 810. Z. · Zbl 0507.62050 · doi:10.1214/aos/1176345072
[12] VANLEEUWEN, D. M., BIRKES, D. S. and SEELY, J. F. 1997. Balance and orthogonality in designs for mixed classification models. Technical Report 168, Dept. Statistics, Oregon State Univ. Z. · Zbl 0963.62059
[13] VANLEEUWEN, D. M., SEELY, J. F. and BIRKES, D. S. 1998. Sufficient conditions for orthogonal designs in mixed linear models. J. Statist. Plann. Inference 73 373 389. · Zbl 0933.62069 · doi:10.1016/S0378-3758(98)00071-8
[14] LAS CRUCES, NEW MEXICO 88003 CORVALLIS, OREGON 97331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.