zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hermite interpolation by Pythagorean hodograph curves of degree seven. (English) Zbl 0963.68210
Summary: Polynomial Pythagorean Hodograph (PH) curves form a remarkable subclass of polynomial parametric curves; they are distinguished by having a polynomial arc length function and rational offsets (parallel curves). Many related references can be found in the article by Farouki and Neff on $C^1$ Hermite interpolation with PH quintics. We extend the $C^1$ Hermite interpolation scheme by taking additional curvature information at the segment boundaries into account. As a result we obtain a new construction of curvature continuous polynomial PH spline curves. We discuss Hermite interpolation of $G^2[C^1]$ boundary data (points, first derivatives, and curvatures) with PH curves of degree 7. It is shown that up to eight possible solutions can be found by computing the roots of two quartic polynomials. With the help of the canonical Taylor expansion of planar curves, we analyze the existence and shape of the solutions. More precisely, for Hermite data which are taken from an analytical curve, we study the behaviour of the solutions for decreasing stepsize $\Delta$. It is shown that a regular solution is guaranteed to exist for sufficiently small stepsize $\Delta$, provided that certain technical assumptions are satisfied. Moreover, this solution matches the shape of the original curve; the approximation order is 6. As a consequence, any given curve, which is assumed to be $G^2$ (curvature continuous) and to consist of analytical segments can approximately be converted into polynomial PH form. The latter assumption is automatically satisfied by the standard curve representations of computer aided geometric design, such as Bézier or B-spline curves. The conversion procedure acts locally, without any need for solving a global system of equations. It produces $G^2$ polynomial PH spline curves of degree 7.

68U07Computer aided design
53A04Curves in Euclidean space
65D17Computer aided design (modeling of curves and surfaces)
Full Text: DOI