×

Invariant representations of discrete-time periodic systems. (English) Zbl 0963.93053

This paper overviews, compares and elaborates the invariant representations of periodic systems. Then four reformulations like time lifted, cyclic, frequency lifted and Fourier are discussed.

MSC:

93C55 Discrete-time control/observation systems
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arcara, P., Bittanti, S., & Lovera, M. (2000). Periodic control of helicopters rotors for attenuation of vibrations in forward flight. IEEE Transactions of Control Systems Technology, to appear.; Arcara, P., Bittanti, S., & Lovera, M. (2000). Periodic control of helicopters rotors for attenuation of vibrations in forward flight. IEEE Transactions of Control Systems Technology, to appear.
[2] Bittanti, S. (1986). Deterministic and stochastic linear periodic systems, In: S. Bittani, Time series and linear systems (pp. 141-182). Berlin: Springer.; Bittanti, S. (1986). Deterministic and stochastic linear periodic systems, In: S. Bittani, Time series and linear systems (pp. 141-182). Berlin: Springer.
[3] Bittanti, S., Bolzern, P., & Guardabassi, G. (1985). Some critical issues concerning the state-representation of time-varying ARMA models. 7th IFAC symposium on identification and system parameter estimation, York, England, (pp. 1479-1484).; Bittanti, S., Bolzern, P., & Guardabassi, G. (1985). Some critical issues concerning the state-representation of time-varying ARMA models. 7th IFAC symposium on identification and system parameter estimation, York, England, (pp. 1479-1484).
[4] Bittanti, S., & Colaneri, P. (1996). Analysis of discrete-time linear periodic systems. In C.T. Leondes Control and dynamic systems, vol. 78. New York: Academic Press.; Bittanti, S., & Colaneri, P. (1996). Analysis of discrete-time linear periodic systems. In C.T. Leondes Control and dynamic systems, vol. 78. New York: Academic Press. · Zbl 0857.93060
[5] Bittanti, S.; Colaneri, P., Periodic control. Encyclopedia of electrical engineering (1999), Wiley: Wiley New York
[6] Bittanti, S.; Colaneri, P.; Mongiovi, M. F., From singular to nonsingular filtering for periodic systems: Filling the gap with the spectral interactor matrix, IEEE Transactions on Automatic Control, 44, 222-227 (1998) · Zbl 1056.93625
[7] Bittanti, S.; Lovera, M., On the zero dynamics of helicopter rotors loads, European Journal of Control, 2, 1, 57-68 (1996) · Zbl 0865.73037
[8] Bolzern, P.; Colaneri, P.; Scattolini, R., Zeros of discrete-time linear periodic systems., IEEE Transactions on Automatic Control, 31, 1057-1058 (1986) · Zbl 0606.93036
[9] Colaneri, P.; Kucera, V., The model matching problem for discrete-time periodic systems, IEEE Transactions on Automatic Control, 42, 1997 (1997) · Zbl 0895.93006
[10] Colaneri, P.; Longhi, S., The minimal realization problem for discrete-time periodic systems, Automatica, 31, 779-783 (1995) · Zbl 0822.93019
[11] Crochiere, R. E.; Rabiner, L. R., Multirate digital signal processing (1993), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0782.94003
[12] Dahleh, M. A.; Vulgaris, P. G.; Valavani, L. S., Optimal and robust controllers for periodic and multirate systems, IEEE Transactions on Automatic Control, 37, 90-99 (1992) · Zbl 0747.93028
[13] D’Angelo, H., Linear time-varying systems: analysis and synthesis (1970), Allyn and Bacon: Allyn and Bacon Boston · Zbl 0202.08502
[14] Faraday, M., On a peculiar class of acoustical figures and on certain forms assumed by a group of particles upon vibrating elasting surfaces, Philosophical Transactions of the Royal Society of London, 299-318 (1831)
[15] Feuer, A.; Goodwin, G. C., Sampling in digital signal processing and control (1996), Birkhauser: Birkhauser New York · Zbl 0864.93011
[16] Flamm, D. S., A new shift-invariant representation for periodic systems, Systems and Control Letters, 17, 9-14 (1991) · Zbl 0729.93034
[17] Floquet, G., Sur les equations differentielles lineaires a coefficients periodicques, Annales de l’Ecole Normale Superieur, 12, 47-89 (1883)
[18] Freudenberg, J. S.; Grizzle, J. W., An observation on the parametrizazion of causal stabilizing controllers for lifted systems, Control Theory and Advanced Technology, 5, 3, 367-372 (1989)
[19] Gardner, W.A. (Ed.). (1994). Cyclostationarity in communications and signal processing. New York: IEEE Press.; Gardner, W.A. (Ed.). (1994). Cyclostationarity in communications and signal processing. New York: IEEE Press. · Zbl 0823.00029
[20] Grasselli, O. M.; Longhi, S., Zeros and poles of linear periodic multivariable discrete-time systems, IEEE Transactions on Circuit, Systems and Signal Processing, 7, 361-380 (1988) · Zbl 0662.93015
[21] Halanay, A., Differential equations — stability, oscillations, time-lags (1966), Academic Press: Academic Press New York · Zbl 0144.08701
[22] Hill, G. W., On the part of the lunar perigee which is a function of the mean motion of the sun and moon, Acta Mathmatica, 8, 1-36 (1886)
[23] Isniewski, R. W.; Blanke, M., Fully magnetic attitude control for spacecraft subject to gravity gradient, Automatica, 35, 1201-1214 (1999) · Zbl 1045.93514
[24] Johnson, W. (1996). Helicopter theory. Princeton, NJ: Princeton University Press. 1981, rep. Dover Pub.; Johnson, W. (1996). Helicopter theory. Princeton, NJ: Princeton University Press. 1981, rep. Dover Pub.
[25] Jury, E. J.; Mullin, F. J., The analysis of sampled data control system with a periodically time varying sampling rate, IRE Transactions on Automatic Control, 5, 15-21 (1959)
[26] Kamen, E. W.; Khargonekar, P. P.; Poolla, K. R., A transfer function approach to linear time-varying discrete-time system, SIAM Journal Control and Optimization, 23, 4, 550-565 (1985) · Zbl 0626.93039
[27] Khargonekar, P. P.; Poolla, K.; Tannembaum, A., Robust control of linear time-invariant plants using periodic compensation, IEEE Transactions on Automatic Control, 30, 1088-1096 (1985) · Zbl 0573.93013
[28] Krank, G. M., Input-output analysis of multirate feedback systems., IRE Transactions on Automatic Control, 32, 21-28 (1957)
[29] Kuijper, M., A periodically time-varying minimal partial realization algorithm based on twisting, Automatica, 35, 1543-1548 (1999) · Zbl 0932.93014
[30] Kuijper, M., & Willems, J. C. (1997). A behavioral framework for periodically time-varying systems. IEEE conference of decision and control, San Diego, USA (pp. 2013-2016).; Kuijper, M., & Willems, J. C. (1997). A behavioral framework for periodically time-varying systems. IEEE conference of decision and control, San Diego, USA (pp. 2013-2016).
[31] Marzollo, A. (Ed.). (1972) Periodic optimization. Berlin: Springer.; Marzollo, A. (Ed.). (1972) Periodic optimization. Berlin: Springer. · Zbl 0269.93001
[32] Mathieu, E., Memoire sur le mouvement vibratoire d’une membrane de forme elliptique, Journal of Mathematics, 13, 137-203 (1868)
[33] McKillip, R., Periodic model following controller for the control-configured helicopter, Journal of the American Helicopter Society, 36, 3, 4-12 (1991)
[34] Meyer, R. A.; Burrus, C. S., A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits Systems, 22, 162-167 (1975)
[35] Nayfeh, A. H.; Mook, D. T., Nonlinear oscillations (1979), Wiley: Wiley New York · Zbl 0418.70001
[36] Park, B., & Verriest, E.I. (1989). Canonical forms for discrete-linear peiodically time-varying systems and a control application. In Proceedings of 28th conference on decision and control, Tampa USA, pp. 1220-1225.; Park, B., & Verriest, E.I. (1989). Canonical forms for discrete-linear peiodically time-varying systems and a control application. In Proceedings of 28th conference on decision and control, Tampa USA, pp. 1220-1225.
[37] Raileigh, J. S., On the crispation of fluid resting upon vibrating support, Philosophical Magazine, 16, 50-58 (1883)
[38] Raileigh, J.S. (1886). The theory of sound, vol. 2. New York.; Raileigh, J.S. (1886). The theory of sound, vol. 2. New York.
[39] Saaty, T.L., & Bram, J. (1981). Nonlinear mathematics. Toronto: General Publishing Company Ltd., 1964, reprinted New York Dover Pub.; Saaty, T.L., & Bram, J. (1981). Nonlinear mathematics. Toronto: General Publishing Company Ltd., 1964, reprinted New York Dover Pub. · Zbl 0198.00102
[40] Tong, L.; Xu, G.; Kailath, T., Blind identification and equalization based on second-order statistics: A time domain approach., IEEE Transactions on Information Theory, 40, 2, 340-349 (1994)
[41] Vaidyanathan, P. P., Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial, Proceedings of the IEEE, 78, 1, 56-93 (1990)
[42] Vaidyanathan, P. P., Multirate systems and filter-banks (1993), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0784.93096
[43] Verriest, E.I. (1988). The operational transfer function and parametrization of \(N\)-periodic systems. In Proceedings 27th Conference on Decision and Control, Austin USA, (pp. 1994-1999).; Verriest, E.I. (1988). The operational transfer function and parametrization of \(N\)-periodic systems. In Proceedings 27th Conference on Decision and Control, Austin USA, (pp. 1994-1999).
[44] Wereley, N.M., & Hall, S.R. (1990). Frequency response of linear time periodic systems. In Proceedings of 29th conference on decision and control, Honululu, USA.; Wereley, N.M., & Hall, S.R. (1990). Frequency response of linear time periodic systems. In Proceedings of 29th conference on decision and control, Honululu, USA.
[45] Xin, J., Kagiwada, H., Sano, A., Tsuj, H., & Yoshimoto, S. (1997). Regularization approach for detection of cyclostationary signals in antenna array processing. IFAC Symposium on System Identification, vol. 2 pp. 529-534.; Xin, J., Kagiwada, H., Sano, A., Tsuj, H., & Yoshimoto, S. (1997). Regularization approach for detection of cyclostationary signals in antenna array processing. IFAC Symposium on System Identification, vol. 2 pp. 529-534.
[46] Yakubovich, V. A.; Starzhinskii, V. M., Linear differential equations with periodic coefficients (1975), Wiley: Wiley New York · Zbl 0308.34001
[47] Zhang, C., Zhang, J., & Furuta, K. (1996). Performance analysis of periodically time-varying controllers. 13th IFAC World Congress, San Francisco, USA, (pp. 207-212).; Zhang, C., Zhang, J., & Furuta, K. (1996). Performance analysis of periodically time-varying controllers. 13th IFAC World Congress, San Francisco, USA, (pp. 207-212).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.