×

zbMATH — the first resource for mathematics

Product of hyperfunctions on the circle. (English) Zbl 0964.32005
Let \(HF(T)\) be the set of all hyperfunctions on the unit circle \(T\). These objects can be interpreted as natural generalisations of Schwartz distributions on \(T\). The product of two hyperfunctions \(\varphi\in HF(T)\) and \(\psi\in HF(T)\) makes sense if it is possible to compute in some sense the convolution \(\widehat\varphi *\widehat\psi\) and if the sequence \(((\widehat\varphi *\widehat\psi) (n))_{n\in \mathbb{Z}}\) is the sequence of Fourier coefficients of some hyperfunction which the authors call the product of \(\varphi\) and \(\psi\).
Let \(\varphi\) and \(\psi\) be two hyperfunctions on the circle which have disjoint support. Then the authors interpret in terms of Fourier coefficients the fact that their product, defined in the sense of sheaf theory, vanishes.
Reviewer: G.L.N.Rao (Nagpur)

MSC:
32A45 Hyperfunctions
32C35 Analytic sheaves and cohomology groups
58J15 Relations of PDEs on manifolds with hyperfunctions
46F15 Hyperfunctions, analytic functionals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Atzmon,Entire functions, invariant subspaces and Fourier transforms, Israel Mathematical Conference Proceedings11 (1997), 37–52. · Zbl 0907.30029
[2] A. Atzmon,Weighted L p spaces of entire functions, Fourier transforms and invariant subspaces, preprint. · Zbl 0907.30029
[3] C. A. Berenstein and R. Gay,Complex Analysis and Special Topics in Harmonic Analysis, Vol. 2, Springer-Verlag, Berlin-Heidelberg-New York, 1995. · Zbl 0837.30001
[4] A. Beurling and P. Malliavin,On Fourier transforms of measures with compact support, Acta Mathematica107 (1962), 291–309. · Zbl 0127.32601 · doi:10.1007/BF02545792
[5] R. P. Boas,Entire Functions, Academic Press, New York, 1952. · Zbl 0049.17301
[6] A. Cerezo,Le cas d’une variable complexe, inHyperfunctions and Theoretical Physics, Lecture Notes in Mathematics449, Springer-Verlag, Berlin, 1975, pp. 5–20.
[7] Y. Domar,Entire functions of order , with bounds on both axes, Annales Academiae Scientiarum Fennicae22 (1997), 339–348. · Zbl 0913.30017
[8] J. Esterle,Singular inner functions and biinvariant subspaces for disymetric weighted shifts, Journal of Functional Analysis144 (1997), 64–104. · Zbl 0938.47003 · doi:10.1006/jfan.1996.2996
[9] J. Esterle and A. Volberg,Sous-espaces invariants par translation de certains espaces de Hilbert de suites quasi-analytiquement pondérées, Comptes Rendus de l’Académie des Sciences, Paris326, Série 1 (1998), 295–300. · Zbl 0919.47009
[10] J. Esterle and A. Volberg,Analytic left-invariant subspaces of weighted Hilbert spaces of sequences, Journal of Operator Theory, to appear. · Zbl 1002.47001
[11] J. Esterle and A. Volberg,Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences, preprint. · Zbl 1059.47034
[12] A. I. Markushevich,Theory of Functions of a Complex Variable (three volumes in one), Chelsea Publishing Company, New York, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.