Grossi, Massimo; Pistoia, Angela; Wei, Juncheng Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. (English) Zbl 0964.35047 Calc. Var. Partial Differ. Equ. 11, No. 2, 143-175 (2000). The paper deals with the existence of positive multipeak solutions of the semilinear Neumann problem \[ -\varepsilon^2 \Delta u+u= u^p\quad \text{in}\;\Omega,\qquad \partial u/\partial\nu=0\quad \text{on}\;\partial\Omega, \] where \(\Omega\subset\mathbb R^N\) is a bounded and smooth domain, \(N\geq 2,\) \(\varepsilon >0,\) \(1<p<(N+2)/(N-2)\) if \(N\geq 3\) and \(p>1\) if \(N=2,\) and \(\nu\) is the unit outward normal to \(\partial\Omega.\) Reviewer: Lubomira Softova (Bari) Cited in 1 ReviewCited in 44 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35B38 Critical points of functionals in context of PDEs (e.g., energy functionals) 35J61 Semilinear elliptic equations Keywords:semilinear elliptic equation; Neumann problem; multipeak solutions PDF BibTeX XML Cite \textit{M. Grossi} et al., Calc. Var. Partial Differ. Equ. 11, No. 2, 143--175 (2000; Zbl 0964.35047) Full Text: DOI