×

zbMATH — the first resource for mathematics

On a model of rotating superfluids. (English) Zbl 0964.35142
The author considers an energy functional which describes rotating superfluids at a rotating velocity \(\omega\). Results similar to those for the Ginzburg-Landau functional of superconductivity are derived. Precisely, it is proved existence of branches of solutions with vortices and existence of a critical value of \(\omega\) above which the energy-minimizers have vortices. An evaluation of the minimal energy as a function of \(\omega\) is also provided.

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
76A25 Superfluids (classical aspects)
76U05 General theory of rotating fluids
82D50 Statistical mechanics of superfluids
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML Link
References:
[1] L. Almeida and F. Bethuel , Topological Methods for the Ginzburg-Landau Equations . J. Math. Pures Appl. 77 ( 1998 ) 1 - 49 . Zbl 0904.35023 · Zbl 0904.35023
[2] A. Aftalion (in preparation.) [3] A. Aftalion , E. Sandier and S. Serfaty , Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity . J. Math. Pures Appl. (to appear). MR 1826348 | Zbl 1027.35123 · Zbl 1027.35123
[3] N. André and I. Shafrir , Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition . Calc. Var. Partial Differential Equations ( 1998 ) 1 - 27 . Zbl 0910.49001 · Zbl 0910.49001
[4] F. Bethuel , H. Brezis and F. Hélein , Ginzburg-Landau Vortices . Birkhäuser ( 1994 ). MR 1269538 | Zbl 0802.35142 · Zbl 0802.35142
[5] A. Bonnet and R. Monneau , Distribution of vortices in a type-II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory . Interfaces Free Bound. 2 ( 2000 ) 181 - 200 . Zbl 0989.35146 · Zbl 0989.35146
[6] H. Brezis and L. Oswald , Remarks on sublinear elliptic equations . Nonlinear Anal. 10 ( 1986 ) 55 - 64 . Zbl 0593.35045 · Zbl 0593.35045
[7] D.A. Butts and D.S. Rokhsar , Predicted signatures of rotating Bose-Einstein condensates . Nature 397 ( 1999 ) 327 - 329 .
[8] Y. Castin and R. Dum , Bose-Einstein condensates with vortices in rotating traps . Eur. Phys. J. D 7 ( 1999 ) 399 - 412 .
[9] A. Fetter , Vortices and Ions in Helium , in The physics of liquid and solid helium, part I, edited by K.H. Bennemann and J.B. Keterson. John Wiley, Interscience, Interscience Monographs and Texts in Physics and Astronomy 30 ( 1976 ).
[10] S. Gueron and I. Shafrir , On a Discrete Variational Problem Involving Interacting Particles . SIAM J. Appl. Math. 60 ( 2000 ) 1 - 17 . Zbl 0962.49025 · Zbl 0962.49025
[11] D. Kinderlehrer and G. Stampacchia , An introduction to variational inequalities and their applications . Acad. Press ( 1980 ). MR 567696 | Zbl 0457.35001 · Zbl 0457.35001
[12] L. Lassoued and P. Mironescu , Ginzburg-Landau type energy with discontinuous constraint . J. Anal. Math. 77 ( 1999 ) 1 - 26 . Zbl 0930.35073 · Zbl 0930.35073
[13] N. Owen , J. Rubinstein and P. Sternberg , Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition . Proc. Roy. Soc. London Ser. A 429 ( 1990 ) 503 - 532 . Zbl 0722.49021 · Zbl 0722.49021
[14] J.F. Rodrigues , Obstacle Problems in Mathematical Physics . Mathematical Studies, North Holland ( 1987 ). MR 880369 | Zbl 0606.73017 · Zbl 0606.73017
[15] S. Serfaty , Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field , Part I. Comm. Contemporary Math. 1 ( 1999 ) 213 - 254 . Zbl 0944.49007 · Zbl 0944.49007
[16] S. Serfaty , Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field , Part II. Comm. Contemporary Math. 1 ( 1999 ) 295 - 333 . Zbl 0964.49005 · Zbl 0964.49005
[17] S. Serfaty , Stable Configurations in Superconductivity: Uniqueness , Multiplicity and Vortex-Nucleation. Arch. Rational Mech. Anal. 149 ( 1999 ) 329 - 365 . Zbl 0959.35154 · Zbl 0959.35154
[18] S. Serfaty , Sur l’équation de Ginzburg-Landau avec champ magnétique , in Proc. of Journées Équations aux dérivées partielles, Saint-Jean-de-Monts ( 1998 ). Numdam | Zbl pre01808721 · Zbl 1213.58014
[19] E. Sandier and S. Serfaty , Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field . Ann. Inst. H. Poincaré Anal. Non Linéaire 17 ( 2000 ) 119 - 145 . Numdam | Zbl 0947.49004 · Zbl 0947.49004
[20] E. Sandier and S. Serfaty , On the Energy of Type-II Superconductors in the Mixed Phase . Rev. Math. Phys. (to appear). MR 1794239 | Zbl 0964.49006 · Zbl 0964.49006
[21] E. Sandier and S. Serfaty , A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity . Annales Sci. École Norm. Sup. (4) 33 ( 2000 ) 561 - 592 . Numdam | Zbl pre01702168 · Zbl 1174.35552
[22] E. Sandier and S. Serfaty , Ginzburg-Landau Minimizers Near the First Critical Field Have Bounded Vorticity . Preprint. MR 1979114 | Zbl 1037.49001 · Zbl 1037.49001
[23] D. Tilley and J. Tilley , Superfluidity and Superconductivity , 2nd edition. Adam Hilger Ltd., Bristol ( 1986 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.