Stoimenow, Alexander Rational knots and a theorem of Kanenobu. (English) Zbl 0964.57004 Exp. Math. 9, No. 3, 473-478 (2000). In the paper [Math. Ann. 285, No. 1, 115-124 (1989; Zbl 0651.57006)], T. Kanenobu showed that for a rational or \(2\)-bridge knot or link, the Jones polynomial \(V\) and the Brandt-Lickorish-Millett-Ho polynomial \(Q\) satisfy \((-u-u^{-1})(Q(-u-u^{-1})-1) = 2(V(u)V(u^{-1}) -1).\) This relation provides a criterion to decide the nonrationality of a knot. In the paper under review the author gives some series of examples where Kanenobu’s necessary condition for the rationality is not sufficient. Reviewer: Sang Youl Lee (Pusan) Cited in 2 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) Keywords:rational knot; Jones polynomial; \(Q\)-polynomial Citations:Zbl 0651.57006; Zbl 0668.57012 PDFBibTeX XMLCite \textit{A. Stoimenow}, Exp. Math. 9, No. 3, 473--478 (2000; Zbl 0964.57004) Full Text: DOI Euclid EuDML References: [1] Alexander J. W., Trans. Amer. Math. Soc. 30 (2) pp 275– (1928) · doi:10.1090/S0002-9947-1928-1501429-1 [2] DOI: 10.1007/BF01389053 · Zbl 0588.57005 · doi:10.1007/BF01389053 [3] Brandt R. D., Invent. Math. 84 (3) pp 563– (1986) · Zbl 0595.57009 · doi:10.1007/BF01388747 [4] Cromwell P. R., J. London Math. Soc. (2) 39 (3) pp 535– (1989) · Zbl 0685.57004 · doi:10.1112/jlms/s2-39.3.535 [5] DOI: 10.1016/0166-8641(83)90004-4 · Zbl 0516.57002 · doi:10.1016/0166-8641(83)90004-4 [6] DOI: 10.1017/S0305004100067323 · Zbl 0632.57007 · doi:10.1017/S0305004100067323 [7] Franks J., Trans. Amer. Math. Soc. 303 (1) pp 97– (1987) · doi:10.1090/S0002-9947-1987-0896009-2 [8] DOI: 10.1090/S0273-0979-1985-15361-3 · Zbl 0572.57002 · doi:10.1090/S0273-0979-1985-15361-3 [9] Ho C. F., Abstracts Amer. Math. Soc. 6 pp 300– (1985) [10] Hoste J., ”KnotScape” (1999) [11] Hoste J., Math. Intell. 20 pp 33– (1998) · Zbl 0916.57008 · doi:10.1007/BF03025227 [12] DOI: 10.1090/S0273-0979-1985-15304-2 · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2 [13] Kanenobu T., Math. Ann. 275 (4) pp 555– (1986) · Zbl 0584.57005 · doi:10.1007/BF01459137 [14] Kanenobu T., Math. Ann. 285 (1) pp 115– (1989) · Zbl 0651.57006 · doi:10.1007/BF01442676 [15] DOI: 10.1016/0040-9383(87)90009-7 · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7 [16] Kauffman L. H., Trans. Amer. Math. Soc. 318 (2) pp 417– (1990) · Zbl 0763.57004 · doi:10.2307/2001315 [17] Kidwell M. E., Proc. Amer. Math. Soc. 100 (4) pp 755– (1987) · doi:10.1090/S0002-9939-1987-0894450-0 [18] Lickorish W. B. R., Braids (Santa Cruz, CA, 1986) 78 pp 399– (1988) [19] Lickorish W. B. R., Topology 26 (1) pp 107– (1987) · Zbl 0608.57009 · doi:10.1016/0040-9383(87)90025-5 [20] Meuasco W., Topology 23 (1) pp 37– (1984) · Zbl 0525.57003 · doi:10.1016/0040-9383(84)90023-5 [21] Morton H. R., Math. Proc. Cambridge Philos. Soc. 99 (1) pp 107– (1986) · Zbl 0588.57008 · doi:10.1017/S0305004100063982 [22] DOI: 10.2307/2373107 · Zbl 0117.17201 · doi:10.2307/2373107 [23] Murasugi K., On closed 3-braids (1974) · Zbl 0327.55001 [24] Murasugi K., Trans. Amer. Math. Soc. 320 (1) pp 237– (1991) · Zbl 0751.57008 · doi:10.2307/2001863 [25] Rolfsen D., Mathematics Lecture Series 7, in: Knots and links (1976) · Zbl 0339.55004 [26] Schubert H., Math. Z. 65 pp 133– (1956) · Zbl 0071.39002 · doi:10.1007/BF01473875 [27] Thistlethwaite M. B., Topology 26 (3) pp 297– (1987) · Zbl 0622.57003 · doi:10.1016/0040-9383(87)90003-6 [28] Vogel P., Comment. Math. Helv. 65 (1) pp 104– (1990) · Zbl 0703.57004 · doi:10.1007/BF02566597 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.