zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Summary of Sinc numerical methods. (English) Zbl 0964.65010
This article attempts to summarize the existing numerical methods based on Sinc approximation. Starting with a comparison of polynomial and Sinc approximation, basic formulas for the latter in the one-dimensional case are given. The author also covers the following: (i) Explicit spaces of analytic functions for one dimensional Sinc approximation, (ii) applications of Sinc indefinite integration and collocation to the solution of ordinary differential equation initial and boundary value problems, (iii) results obtained for solution of partial differential equations, via Sinc approximation of the derivatives, (iv) some results obtained on the solutions of integral equations, (v) use of Sinc convolution, a technique for evaluating one and multi-dimensional convolution-type integrals. A list of some existing computer algorithms based on Sinc methods is also given.

65D15Algorithms for functional approximation
65-02Research monographs (numerical analysis)
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
65M70Spectral, collocation and related methods (IVP of PDE)
65N35Spectral, collocation and related methods (BVP of PDE)
65R20Integral equations (numerical methods)
65T40Trigonometric approximation and interpolation (numerical methods)
Full Text: DOI
[1] K. Al-Khaled, Theory and computation in Hyperbolic model problems, Ph.D. Thesis, University of Nebraska, 1996.
[2] Andersson, J. -E.; Bojanov, B. D.: A note on the optimal quadrature in hp. Numer. math. 44, 301-308 (1984) · Zbl 0546.41026
[3] Ang, D. D.; Lund, J. R.; Stenger, F.: Complex variable and regularization methods of inversion of the Laplace transform. Math. comp. 51, 589-608 (1989) · Zbl 0676.65136
[4] Anselone, P.: Collectively compact operator approximation theory and applications to integral equations. (1971) · Zbl 0228.47001
[5] Bialecki, B.; Stenger, F.: Sinc-Nyström method for numerical solution of one-dimensional Cauchy singular integral equations given on a smooth arc in the complex plane. Math. comp. 51, 133-165 (1988) · Zbl 0662.65120
[6] Bojanov, B.: Best quadrature formula for a certain class of analytic functions. Zastosowania matematyki appl. Mat. 14, 441-447 (1974) · Zbl 0299.65012
[7] Borel, E.: Sur l’interpolation. CR acad. Sci. Paris 124, 673-676 (1897)
[8] Burchard, H. G.; Höllig, K.: N-width and entropy of hp classes in $Lq(-1,1)$. SIAM J. Math. anal. 16, 405-421 (1985) · Zbl 0554.41030
[9] R. Burke, Application of the Sinc-Galerkin method to the solution of boundary value problems, M. Sc. Thesis, University of Utah, 1977.
[10] Davis, P. J.: Errors of numerical approximation for analytic functions. J. rational mech. Anal. 2, 303-313 (1953) · Zbl 0050.13005
[11] D. Elliott, F. Stenger, Sinc method of solution of singular integral equations, IMACS Conference on CSIE, Philadelphia, PA, 1984, pp. 155--166.
[12] W. Faltenbacher, Sinc method of solution of the Helmholtz Equation on a Half Space, University of Utah, Utah, 1984.
[13] Ikebe, Y.; Li, T. Y.; Stenger, F.: Numerical solution of Hilbert’s problem. Theory of approximation with applications, 338-358 (1976)
[14] Jarratt, M.; Lund, J.; Bowers, K. L.: Galerkin schemes and the sinc-Galerkin method for singular Sturm-Liouville problems. J. comput. Phys. 89, 41-62 (1990) · Zbl 0702.65078
[15] Jerri, A.: The Shannon sampling theorem -- its various extensions and applications: a tutorial review. Proc. IEEE 65, 1565-1596 (1977) · Zbl 0442.94002
[16] Johnson, S. A.; Zhou, Y.; Tracy, M. L.; Berggren, M. J.; Stenger, F.: Inverse scattering solutions by sinc basis, multiple source moment method, -- part III: Fast algorithms. Ultrasonic imaging 6, 103-116 (1984)
[17] Keinert, F.: Uniform approximation to |x|${\beta}$ by sinc functions. J. approx. Theory 66, 44-52 (1991) · Zbl 0738.41023
[18] V.A. Kotel’nikov, On the carrying capacity of the ’Ether’ and wire in telecommunications, Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow, 1933.
[19] Kowalski, M.; Sikorski, K.; Stenger, F.: Selected topics in approximation and computation. (1993) · Zbl 0839.41001
[20] D.L. Lewis, A fully Galerkin method for parabolic problems, Ph.D. Thesis, Montana State University, 1989.
[21] Lippke, A.: Analytic solution and sinc function approximation in thermal conduction with nonlinear heat generation. J. heat transfer (Trans. ASME) 113, 5-11 (1991)
[22] Lund, J.: Symmetrization of the sinc-Galerkin method for boundary value problems. Math. comput. 47, 571-588 (1986) · Zbl 0629.65085
[23] Lund, J.; Bowers, K. L.: Sinc methods for quadrature and differential equations. (1992) · Zbl 0753.65081
[24] Lundin, L.: A cardinal function method of solution of the equation ${\Delta}$ u=u - u3. Math. comput. 35, 747-756 (1980) · Zbl 0445.65086
[25] Lundin, L.; Stenger, F.: Cardinal-type approximation of a function and its derivatives. SIAM J. Numer. anal. 10, 139-160 (1979) · Zbl 0399.41018
[26] Mcarthur, K.; Bowers, K.; Lund, J.: Numerical implementation of the sinc-Galerkin method for second-order hyperbolic equations. Numer. methods partial differential equations 3, 169-185 (1987) · Zbl 0698.65069
[27] Mcnamee, J.; Stenger, F.; Whitney, E. L.: Whittaker’s cardinal function in retrospect. Math. comp. 25, 141-154 (1971) · Zbl 0216.48502
[28] Moran, P. A. P.: Numerical integration in the presence of singularities. Acta math. Sci. 1, 83-85 (1981) · Zbl 0519.65016
[29] M. Mori, M. Sugihara, The double exponential transformation in numerical analysis, in: C. Wujtak (Ed.), Orthogonal Polynomials and Quadrature Formulae (Special Issue of J. Comp. Appl. Math.), to appear. · Zbl 0971.65015
[30] D. Morley, On the convergence of a Newton-like method for closed surfaces, Ph.D. Thesis, University of Utah, 1979.
[31] J. Mueller, Inverse problems for singular differential equations, Ph.D. Thesis, University of Nebraska, 1997. · Zbl 0884.60054
[32] A. Naghsh-Nilchi, F. Stenger, Sinc-convolution method of solving the electric field integral equations over R2{$\times$}R+{$\times$} [0,T], submitted for publication.
[33] S. Narashimhan, K. Chen, F. Stenger, The Harmonic-Sinc solution of the Laplace equation for problems with singularities and semi-infinite domains, Numer. Heat Transfer, to appear.
[34] O’reilly, M.; Stenger, F.: Computing solutions to medical problems. IEEE trans. Automat. control 43, 843-846 (1998)
[35] K. Parker, PTOLEMY, A Sinc collocation sub-system, Ph.D. Thesis, University of Utah, 1999.
[36] K. Pfabe, A problem in nonlinear ion transport, Ph.D. Thesis, University of Newbraska, 1995.
[37] Plana, G.: Sur une nouvelle expression analytique des nombres bernoulliens. Academia di Torino 25, 403-418 (1820)
[38] Rahman, Q. I.; Schmeisser, G.: The summation formulæ of Poisson, plana, Euler-Maclaurin and their relationship. J. math. Sci. 28, 151-171 (1994) · Zbl 1019.65500
[39] R. Schmidtlein, F. Stenger, A Sinc-Fortran package for conformal mapping, to appear. · Zbl 0948.30014
[40] J. Schwing, Numerical solution of integral equations in potential theory problems, Ph.D. Thesis, University of Utah, 1976.
[41] Schwing, J.; Sikorski, K.; Stenger, F.: ALGORITHM 614, A Fortran subroutine for numerical integration in hp. ACM toms 10, 152-160 (1984)
[42] C.E. Shannon, A mathematical theory of communication, Bell Systems Tech. J. 27 (1948) 379--423,623--656.
[43] J. Soller, Global optimization for neural network problems, Ph.D. Thesis, University of Utah, 1994.
[44] W. Squire, Numerical evaluation of integrals using Moran transformations, Aerospace Eng. Report No. Tr-14, 1969.
[45] Stenger, F.: An analytic function which is an approximate characteristic function. SIAM J. Numer. anal. 12, 239-254 (1975) · Zbl 0274.65010
[46] Stenger, F.: The approximate solution of convolution-type integral equations. SIAM J. Math. anal. 4, 536-555 (1973) · Zbl 0258.45005
[47] Stenger, F.: Integration formulas based on the trapezoidal formula. J. inst. Math. appl. 12, 103-114 (1973) · Zbl 0262.65011
[48] Stenger, F.: Approximations via the Whittaker cardinal function. J. approx. Theory 17, 222-240 (1976) · Zbl 0332.41013
[49] Stenger, F.: A sinc-Galerkin method of solution of boundary value problems. Math. comp. 33, 85-109 (1979) · Zbl 0402.65053
[50] Stenger, F.: Numerical methods based on the Whittaker cardinal, or sinc functions. SIAM rev. 23, 165-224 (1981) · Zbl 0461.65007
[51] F. Stenger, Sinc methods for solving partial differential equations, in: A. Miller (Ed.), Contributions of Mathematical Analysis to the Approximate Solution of Partial Differential Equations, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 7, 1984, pp. 40--64.
[52] Stenger, F.: Numerical methods based on sinc and analytic functions. (1993) · Zbl 0803.65141
[53] Stenger, F.: Collocating convolutions. Math. comp. 64, 211-235 (1995) · Zbl 0828.65017
[54] Stenger, F.; Barkey, B.; Vakili, R.: Sinc convolution method of solution of Burgers equation. Proceedings of computation and control III (1993) · Zbl 0822.65073
[55] F. Stenger, S.Å. Gustafson, B. Keyes, M. O’Reilly, K. Parker, ODE-IVP-PACK, via Sinc indefinite integration and Newton iteration, Numer. Algorithms, to appear.
[56] F. Stenger, A. Naghsh-Nilchi, J. Niebsch, R. Ramlau, A unified approach to the approximate solution of PDE, Comm. Appl. Anal., to appear. · Zbl 1026.35006
[57] F. Stenger, R. Schmidtlein, Conformal maps via Sinc methods, in: N. Papamichael, St. Ruscheweyh, E.B. Saff (Eds.), Computational Methods in Function Theory (CMFT ’97), World Scientific, Singapore, pp. 505--549. · Zbl 0948.30014
[58] M. Stromberg, Solution of shock problems by methods using Sinc functions, Ph.D. Thesis, University of Utah, 1988.
[59] M. Sugihara, Optimality of the double exponential formula -- functional analysis approach, Numer. Math. 75 (1997) 379--395 (The original paper in Japanese appeared in Kokyuroku RIMS Kyoto Univ. No. 585 (1986) 150--175). · Zbl 0868.41019
[60] Takahasi, H.; Mori, M.: Error estimation in the numerical integration of analytic functions. Report comput. Centre, univ. Tokyo 3, 41-108 (1970)
[61] Takahasi, H.; Mori, M.: Quadrature formulas obtained by variable transformation. Numer. math. 21, 206-219 (1973) · Zbl 0267.65016
[62] Takahasi, H.; Mori, M.: Double exponential formulas for numerical integration. Publ. RIMS Kyoto univ. 9, 721-741 (1974) · Zbl 0293.65011
[63] Whittaker, E. T.: On the functions which are represented by expansion of the interpolation theory. Proc. roy. Soc. Edinburgh 35, 181-194 (1915) · Zbl 45.0553.02
[64] Wilderotter, K.: N-widths of hp-spaces in $Lq(-1,1)$. J. complexity 8, 324-335 (1992) · Zbl 0803.46056
[65] Yee, K.: Numerical solution of boundary value problems involving Maxwell’s equations in isotropic media. IEEE trans. Antennas and propagation 16, 302-307 (1966) · Zbl 1155.78304
[66] T. Zhang, F. Stenger, SINC -- PACK -- A Package of Sinc Algorithms, in preparation.