×

zbMATH — the first resource for mathematics

Integral equations via saddle point problem for 2D electromagnetic problems. (English) Zbl 0964.78005
The authors derive a new integral equation system for two-dimensional scattering problems. This is deduced from first principles and also by means of minimization of a quadratic functional. An asymptotic analysis is carried out, and algorithms are suggested for numerical work. The methods discussed are used to evaluate the Radar Cross Section of a number of bodies. The agreement is satisfactory when an exact value is available, and it is suggested that the method may be useful for a target covered by a thin dielectric layer. A method for dealing with the awkward case of a quasi-cavity system is suggested.

MSC:
78A45 Diffraction, scattering
45F15 Systems of singular linear integral equations
78M35 Asymptotic analysis in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New-York (1972). · Zbl 0543.33001
[2] N. Bartoli, Higher Order Effective Boundary Conditions for Perfectly Conducting Scatterers Coated by a thin Dielectric Layer. PhD thesis, INSA, Toulouse (to appear). Zbl1029.78004 · Zbl 1029.78004 · doi:10.1093/imamat/67.5.479
[3] N. Bartoli and A. Bendali, Higher order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer and their boundary element solution (to be submitted). Zbl1029.78004 · Zbl 1029.78004 · doi:10.1093/imamat/67.5.479
[4] A. Bendali, Boundary element solution of scattering problems relative to a generalized impedance boundary condition, in Partial differential equations, Theory and numerical solution, W. Jäger, J. Necas, O. John, K. Najzar and J. Stará, Eds. Chapman & Hall/CRC, 406 (1999) 10-24. Zbl0937.78015 · Zbl 0937.78015
[5] A. Bendali and L. Vernhet, Résolution par élements finis de frontière d’un problème de diffraction d’onde comportant une condition aux limites d’impédance généralisée. C. R. Acad. Sci. Paris, 321 (1995) 791-797. Zbl0837.65130 · Zbl 0837.65130
[6] F. Brezzi and M. Fortin, in Mixed and Hybrid Finite Element Method, volume 15, Springer-Verlag (1991). Zbl0788.73002 · Zbl 0788.73002
[7] D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetric inconsistent linear systems. in Proceedings of the Cornelius Lanczos International Centenary Conference, J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds. SIAM, Philadelphia (1994) 267-272.
[8] G. Chen and J. Zhou, in Boundary element Methods. Academic Press, London (1992). Zbl0842.65071 · Zbl 0842.65071
[9] F. Collino and B. Després, Integral equations via saddle point problems for time-harmonic Maxwell’s equations. SIAM J. Appl. Math. (submitted). · Zbl 1016.65110 · doi:10.1016/S0377-0427(02)00658-1
[10] D. Colton and R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory, 93, Springer-Verlag (1992). Zbl0760.35053 · Zbl 0760.35053
[11] B. Després, Quadractic functional and integral equations for harmonic wave problems in exterior domains. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 679-732. Zbl0890.65131 · Zbl 0890.65131 · eudml:193853
[12] V. Frayssé, L. Giraud and S. Gratton, A set of GMRES routines for real and complex arithmetics. Technical report, Cerfacs TR/PA/97/49, Toulouse, France (1997). · Zbl 1070.65527
[13] V. Girault and P.A. Raviart, in Finite Element methods for Navier-Stokes Equations, Theory and Algorithms, 5, Springer-Verlag (1986). · Zbl 0585.65077
[14] G.H. Golub and C.F. Van Loan, in Matrix Computations, 3rd edn., Chap. 9-10, The Johns Hopkins University Press, Baltimore (1996). · Zbl 0865.65009
[15] B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal., 164 (1999) 340-355. · Zbl 0932.35048 · doi:10.1006/jfan.1999.3391
[16] Y. Saad, in Iterative methods for sparse linear systems. PWS publishing (1995).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.