×

zbMATH — the first resource for mathematics

Virtual and effective control for distributed systems and decomposition of everything. (English) Zbl 0964.93043
The author surveys decomposition methods for the solution of optimal control problems for distributed systems, that is, systems described by partial differential equations. These methods are especially important with the use of parallel computation. The author describes the notion of virtual control so that optimal control problems and boundary value problems can be considered in the same framework.
This survey is recommended for anyone interested in numerical solutions of optimal control problems for distributed systems.

MSC:
93C20 Control/observation systems governed by partial differential equations
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
49M27 Decomposition methods
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. D. Benamou,Décomposition de domaines pour le contrÔle de systémes gouvernés par des équations d’évolution, C. R. Acad. Sci. Paris, Ser.1324 (1997), 1065–1070.
[2] J. D. Benamau and B. Després,A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys.136 (1997), 68–82. · Zbl 0884.65118 · doi:10.1006/jcph.1997.5742
[3] A. Bensoussan, J. L. Lions and R. Teman,Sur les méthodes de décomposition, de décentralisation et de coordination et applications, inMéthodes Mathématiques de l’Informatique (J. L. Lions and G. I. Marchuk, eds.), Dunod, Paris, 1994, pp. 133–257.
[4] H. Q. Chen, J. L. Lions and J. Pénaux,Virtual controls, Nash equilibria and application, C. R. Acad. Sci. Paris, to appear.
[5] A. Chorin,A numerical method for solving incompressible viscous flow problems, J. Comput Phys.2(1967), 12–26. · Zbl 0149.44802 · doi:10.1016/0021-9991(67)90037-X
[6] A. Chorin,Numerical solution of the Navier Stokes equations, Math. Comp.23 (1968), 341–354. · Zbl 0198.50103 · doi:10.1090/S0025-5718-1969-0242393-5
[7] V. Girault and P. A. Raviart,Finite Element Methods for Navier-Stokes equations, Springer-Verlag, Berlin, 1986. · Zbl 0585.65077
[8] R. Glowinski and J. L. Lions,Exact and approximate controllability for distributed parameter systems, Acta Numerica (1994) 269–378; (1995), 159–333. · Zbl 0838.93013
[9] R. Glowinski, J. L. Lions and O. Pironneau,Decomposition of energy spaces and applications, C. R. Acad. Sci. Paris329 (1999), 445–452. · Zbl 0938.65081
[10] R. Glowinski, J. L. Lions, T. W. Pan and O. Pironneau,Decomposition of energy spaces, virtual control and applications, to appear. · Zbl 0938.65081
[11] J. E. Lagnese and G. Leugering,Dynamic domain decomposition in approximate and exact boundary control in problems of transmission for wave equations, to appear. · Zbl 0952.93010
[12] J. Leray,Etude de diverses équations intégrales non linéaires et de quelques problémes que pose l’hydrodynamique, J. Math. Pures Appl.12 (1933), 1–82. · Zbl 0006.16702
[13] J. Leray,Essai sur le mouvement plan d’un liquide visqueux que limitent des parois, J. Math. Pures Appl.13 (1934), 331–418. · JFM 60.0727.01
[14] J. Leray,Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math.63 (1934), 193–248. · JFM 60.0726.05 · doi:10.1007/BF02547354
[15] J. L. Lions.Equations Différentielles opérationnelles, Springer-Verleg, Berlin, 1961.
[16] J. L. Lions,ContrÔle optimal des systémes gouvernés par des équations aux dérivées partielles, Dunod, Paris, Gauthier-Villars, 1968.
[17] J. L. Lions,Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, 1969.
[18] J. L. Lions,Perturbations singuliéres dans les problémes aux limites et en contrÔle optimal, Lectures Notes in Math.323, Springer-Verlag, Berlin, 1973.
[19] J. L. Lions,Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev.30(1988), 1–68. · Zbl 0644.49028 · doi:10.1137/1030001
[20] J. L. Lions,Virtual and effective control. Example of the stationary Navier-Stokes model, Canaries Islands, September 1999.
[21] J. L. Lions,Decomposition of energy spaces and virtual control for parabolic systems, DDM Symposium, Tokyo, October 1999.
[22] J. L. Lions,Parallel stabilization, Chinese Ann. Math. Ser. B20 (1999), 29–38. · Zbl 0922.35010 · doi:10.1142/S0252959999000059
[23] J. L. Lions and E. Magenes,Problémes aux limites non homogènes et applications, Vols.1 and 2, Dunod, Paris, 1968. · Zbl 0165.10801
[24] J. L. Lions and O. Pironneau,Algorithmes parallèles pour la solution des problèmes aux limites, C. R. Acad. Sci. Paris327 (1998), 947–952. · Zbl 0918.65071
[25] J. L. Lions and O. Pironneau,Sur le contrÔle parallèle des systèmes distribués, C. R. Acad. Sci. Paris327 (1998), 993–998. · Zbl 0926.93032
[26] J. L. Lions and O. Pironneau,Domain decomposition methods for C.A.D., C. R. Acad. Sci. Paris328 (1999), 73–80. · Zbl 0937.68140
[27] J. L. Lions and O. Pironneau,Decomposition d’opérateurs, répliques et contrÔle virtuel, C. R. Acad. Sci. Paris329 (1999).
[28] J. L. Lions and O. Pironneau,Méthodes de Décomposition, Lectures Notes, in preparation.
[29] P. L. Lions,Mathematical Topics in Fluid Mechanics, Vol. 2,Compressible Models, Oxford Lecture Series, 10, Oxford University Press, 1998.
[30] G. I. Marchuk,Methods of Numerical Mathematics, Springer-Verlag, Berlin, 1975. · Zbl 0329.65002
[31] D.H. Peaceman and H.H. Rachford,The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math.3 (1955), 28–41; Oxford Lecture Series, 10, Oxford University Press, 1998. · Zbl 0067.35801 · doi:10.1137/0103003
[32] N. N. Yanenko,Méthode à pas fractionnaire–Résolution de problèmes polydimensionnels de physique mathématique, Armand Colin, Paris, 1968. · Zbl 0185.41803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.