×

Two short presentations for Lyons’ sporadic simple group. (English) Zbl 0965.20015

The author gives two new presentations of the Lyons sporadic simple group. He uses a double coset algorithm developed in a previous paper [J. Algebra 233, No. 2, 526-542 (2000; Zbl 1007.20033)].

MSC:

20F05 Generators, relations, and presentations of groups
20D08 Simple groups: sporadic groups

Citations:

Zbl 1007.20033
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Bosm W., j. symbolic comput. 24 (3) pp 235– (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[2] DOI: 10.1016/0012-365X(73)90104-0 · Zbl 0272.20030 · doi:10.1016/0012-365X(73)90104-0
[3] Conway J. H., Atlas of finite groups (1985)
[4] Gebhert V., An algorithm for the construction of a defining set of relations for a finite group (1999)
[5] Gebhnrdt V., J algebra (2000)
[6] Gollan H. W., A contribution to the revision project of the sporadic groups; Lyons’ simple group Ly (1998) · Zbl 0896.20013
[7] Havas, G. 1999.”coset enumeration strategies”191–199. [Havas 1991], in issac1991; proceeding of the international Symposium on symbolic and by s.m.watt, acm press, new york
[8] Havas G., computational methods for representations of groups and algebras pp 241– (1997)
[9] DOI: 10.1016/0021-8693(72)90072-5 · Zbl 0229.20009 · doi:10.1016/0021-8693(72)90072-5
[10] Sims c. c., finit group pp 138– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.