zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-solitary wave solutions for variant Boussinesq equations and Kupershmidt equations. (English) Zbl 0965.35154
Summary: Using the homogeneous balance method introduced by Wang Mingliang, the multi-solitary wave solutions are obtained for the variant Boussinesq equation and Kupershmidt equation. Wang’s result is a special case of above results for the variant Boussinesq equation.

35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
Full Text: DOI
[1] Wang Mingliang Solitary wave solutions for the variant Boussinesq equations[J].Phys Lett A, 1995,199(2):169--172. · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[2] Sach R L. On the integrable variant of the Boussinesq system, Painleve property, rational solutions, a related many body system, and equivalence with the AKNS hierarchy[J].Physica D, 1988,30 (1):1--27. · Zbl 0694.35207 · doi:10.1016/0167-2789(88)90095-4
[3] Ruan Hangyu, Lou Senyue. Similarity analysis and Painleve property of the Kupershmidt equation [J].Commun. Theor Phys, 1993,20(1):73--80. · Zbl 0810.35085
[4] Whitham G B.Linear and Nonlinear and Waves[M]. New York: Wiley-Interscience, 1973.