×

Weyl spectra of operator matrices. (English) Zbl 0965.47011

The author studies Fredholm properties of the operator matrix \(M_C = \left(\begin{smallmatrix} A & C \\ 0 & B\end{smallmatrix} \right)\) for operators in Hilbert spaces. Let \(\omega (T)\) denote the Weyl spectrum of an operator \(T\), i.e., the set of all complex \(\lambda\) such that \(\lambda -T\) is not a Fredholm operator of index zero. The main result of the paper reads as follows:
\(\omega (A) \cup \omega (B) = \omega (M_C) \cup \kappa\), where \(\kappa\) is the union of some holes in \(\omega (M_C)\) which are contained in \(\omega (A) \cap \omega (B)\).
This implies that the Weyl spectral radius of \(M_C\) is independent of \(C\).

MSC:

47A53 (Semi-) Fredholm operators; index theories
47A55 Perturbation theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. K. Berberian, An extension of Weyl’s theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273 – 279. · Zbl 0175.13603
[2] S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970/1971), 529 – 544. · Zbl 0203.13401
[3] Bernard Chevreau, On the spectral picture of an operator, J. Operator Theory 4 (1980), no. 1, 119 – 132. · Zbl 0465.47015
[4] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285 – 288. · Zbl 0173.42904
[5] Hong Ke Du and Pan Jin, Perturbation of spectrums of 2\times 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994), no. 3, 761 – 766. · Zbl 0814.47016
[6] Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. · Zbl 0745.47002
[7] Robin Harte, Fredholm, Weyl and Browder theory, Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 151 – 176. · Zbl 0567.47001
[8] Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. · Zbl 0636.47001
[9] Robin Harte and Woo Young Lee, The punctured neighbourhood theorem for incomplete spaces, J. Operator Theory 30 (1993), no. 2, 217 – 226. · Zbl 0873.47007
[10] Robin Harte and Woo Young Lee, An index formula for chains, Studia Math. 116 (1995), no. 3, 283 – 294. · Zbl 0870.46049
[11] Robin Harte and Woo Young Lee, Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115 – 2124. · Zbl 0873.47001
[12] Kirti K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208 – 212. · Zbl 0277.47002
[13] Carl M. Pearcy, Some recent developments in operator theory, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 36. · Zbl 0444.47001
[14] Joseph G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453 – 1458. · Zbl 0129.08701
[15] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392. · JFM 40.0395.01
[16] Kung Wei Yang, Index of Fredholm operators, Proc. Amer. Math. Soc. 41 (1973), 329 – 330. · Zbl 0248.47017
[17] Kung Wei Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 216 (1976), 313 – 326. · Zbl 0297.47027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.