×

Gibbs measures relative to Brownian motion. (English) Zbl 0965.60095

In relation with the physical problem of a quantum particle subject to a potential and coupled to a free bosonic field, the authors consider Gibbs measures \(\mu\) on \(C(R,R)\) with external potential \(\varphi : R \rightarrow R \cup \{\infty \}\) and interaction potential \(w : R^2\rightarrow R\) defined by \[ \mu_{T,\xi} = Z_{T,\xi}^{-1} e^{-H_T(X,\xi)} dW_{T,\xi}, \qquad T\in R_+, \quad \xi \in C(R,R), \] where \(\mu_{T,\xi}\) is the law \(\mu\) of \((X_t)_{t\in R_+}\) given \(X_t=\xi_t\), \(\forall |t|\geq T\), \(W_{T,\xi}\) is the Brownian bridge measure on \(C([-T,T],R)\) conditioned by \(\{X_T = \xi_T, X_{-T} = \xi_{-T}\}\), \(Z_{T,\xi}^{-1}\) is a normalization constant, and \[ \begin{split} H_T (X,\xi) = \int_{|t |\leq T} \varphi (X_t) dt + {1 \over 2} \int_{|t |, |u |\leq T} w(t-u,X_t-X_u) dt du\\ + \int_{|t|\leq T < |u |} w(t-u,X_t-\xi_u) dt du.\end{split} \] An existence result is obtained for such measures via a finite volume construction, and uniqueness is proved among translation invariant measures satisfying a finite moment condition. Examples of potentials which do not define a unique translation invariant Gibbs measure are given as \(\varphi (x) = \beta (x^4-x^2)\) and \(w(t,x) = \alpha (1+|t|)^{-\gamma } x^2\), for some values of \(1<\gamma \leq 2\) and \(\alpha, \beta >0\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389. · Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[2] Bricmont, J., Lebowitz, J. L. and Pfister, C. (1981). Periodic Gibbs states of ferromagnetic spin systems. J. Statist. Phys. 24 269-278. · doi:10.1007/BF01007648
[3] Dyson, F. J. (1971). Existence of a phase-transition in a one-dimensional Ising ferromagnet. Comm. Math. Phys. 12 91-107. · Zbl 1306.47082 · doi:10.1007/BF01645907
[4] Fr öhlich, J. and Spencer, T. (1982). The phase transition in the one-dimensional Ising model with 1/r2 interaction energy. Comm. Math. Phys. 84 87-102. · Zbl 1110.82302 · doi:10.1007/BF01208373
[5] Georgii, H.-O. (1988). Gibbs Measures and Phase Transitions. de Gruyter, Berlin. · Zbl 0657.60122 · doi:10.1515/9783110850147
[6] Glimm, J. and Jaffe, A. (1981). Quantum Physics: A Functional Integral Point of View. Springer, Berlin. · Zbl 0461.46051
[7] Lebowitz, J. L. and Presutti, E. (1976). Statistical mechanics of systems of unbounded spins. Comm. Math. Phys. 50 195-218. · doi:10.1007/BF01609401
[8] Papangelou, F. (1984). On the absence of phase transition in one-dimensional random fields I. Sufficient conditions.Wahrsch. Verw. Gebiete 67 255-263. · Zbl 0545.60098 · doi:10.1007/BF00535002
[9] Preston, C. J. (1974). A generalization of the FKG inequality. Comm. Math. Phys. 36 223- 241. · doi:10.1007/BF01645981
[10] Ruelle, D. (1970). Superstable interactions in classical statistical mechanics. Comm. Math. Phys. 18 127-159. · Zbl 0198.31101 · doi:10.1007/BF01646091
[11] Simon, B. (1979). Functional Integration and Quantum Physics. Academic Press, London. · Zbl 0434.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.