Hadjidimos, A. Successive overrelaxation (SOR) and related methods. (English) Zbl 0965.65052 J. Comput. Appl. Math. 123, No. 1-2, 177-199 (2000). This paper gives a comprehensive summary of the theory and practice of successive overrelaxation. After the general theory is outlined, the important cases of \((q,p-q)\)-cyclic consistently ordered matrices and block \(p\)-cyclic repartitioning are examined. Modified, symmetric and unsymmetric SOR methods, accelebrated overrelaxation, nonstationary, and higher-order methods are finally analyzed. Reviewer: F.Szidarovszky (Tucson) Cited in 29 Documents MSC: 65F10 Iterative numerical methods for linear systems Keywords:Jacobi method; Gauss-Seidel method; SOR method; successive overrelaxation; consistently ordered matrices; accelebrated overrelaxation Software:ITPACK PDF BibTeX XML Cite \textit{A. Hadjidimos}, J. Comput. Appl. Math. 123, No. 1--2, 177--199 (2000; Zbl 0965.65052) Full Text: DOI OpenURL References: [1] Avdelas, G.; Hadjidimos, A., Optimum accelerated overrelaxation method in a special case, Math. comp., 36, 183-187, (1981) · Zbl 0463.65020 [2] Avdelas, G.; Hadjidimos, A., Optimal 2-cyclic MSOR for “bowtie“ spectra and the “continuous” manteuffel algorithm, Linear algebra appl., 265, 29-54, (1997) · Zbl 0885.65035 [3] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical sciences, (1994), SIAM Philadelphia, PA · Zbl 0815.15016 [4] Buoni, J.J.; Neumann, M.; Varga, R.S., Theorems of stein – rosenberg type III, the singular case, Linear algebra appl., 42, 183-198, (1982) · Zbl 0487.65017 [5] Buoni, J.J.; Varga, R.S., Theorems of stein – rosenberg type, (), 65-75 · Zbl 0412.65016 [6] Buoni, J.J.; Varga, R.S., Theorems of stein – rosenberg type II, optimal paths of relaxation in the complex plane, (), 231-240 [7] Chin, R.C.Y.; Manteuffel, T.A., An analysis of block successive overrelaxation for a class of matrices with complex spectra, SIAM J. numer. anal., 25, 564-585, (1988) · Zbl 0655.65060 [8] L. Chong, D.-Y. Cai, Relationship between eigenvalues of Jacobi and SSOR iterative matrix with p-weak cyclic matrix J. Comput. Math. Coll. Univ. 1 (1985) 79-84 (in Chinese). · Zbl 0604.65014 [9] Dancis, J., The optimal ω is not best for the SOR iteration method, Linear algebra appl., 154-156, 819-845, (1991) · Zbl 0731.65020 [10] D’Sylva, E.; Miles, G.A., The S.S.O.R. iteration scheme for equations with σ1-orderings, Comput. J., 6, 271-273, (1963) [11] Eiermann, M.; Niethammer, W.; Ruttan, A., Optimal successive overrelaxation iterative methods for p-cyclic matrices, Numer. math., 57, 593-606, (1990) · Zbl 0708.65032 [12] Eiermann, M.; Niethammer, W.; Varga, R.S., A study of semi-iterative methods for non-symmetric systems of linear equations, Numer. math., 47, 503-533, (1985) · Zbl 0585.65025 [13] Eiermann, M.; Niethammer, W.; Varga, R.S., Acceleration of relaxation methods for non-Hermitian linear systems, SIAM J. matrix anal. appl., 13, 979-991, (1991) · Zbl 0757.65032 [14] Eiermann, M.; Varga, R.S., Is the optimal ω best for the SOR iterative method? linear algebra appl., 182, 257-277, (1993) · Zbl 0773.65016 [15] Eiermann, M.; Varga, R.S., Optimal semi-iterative methods applied to SOR in the mixed case, (), 47-73 · Zbl 0794.65027 [16] Frankel, S.P., Convergence rates of iterative treatments of partial differential equations, Math. tables aids comput., 4, 65-75, (1950) [17] Galanis, S.; Hadjidimos, A., Best cyclic repartitioning for optimal SOR convergence, SIAM J. matrix anal. appl., 13, 102-120, (1992) · Zbl 0745.65022 [18] Galanis, S.; Hadjidimos, A.; Noutsos, D., On the equivalence of the k-step iterative Euler methods and successive overrelaxation (SOR) methods for k-cyclic matrices, Math. comput. simulation, 30, 213-230, (1988) · Zbl 0659.65029 [19] Galanis, S.; Hadjidimos, A.; Noutsos, D., Optimal p-cyclic SOR for complex spectra, Linear algebra appl., 263, 233-260, (1997) · Zbl 0885.65034 [20] Galanis, S.; Hadjidimos, A.; Noutsos, D., A Young-Eidson’s type algorithm for complex p-cyclic SOR spectra, Linear algebra appl., 286, 87-106, (1999) · Zbl 0939.65043 [21] Galanis, S.; Hadjidimos, A.; Noutsos, D.; Tzoumas, M., On the optimum relaxation factor associated with p-cyclic matrices, Linear algebra appl., 162-164, 433-445, (1992) · Zbl 0751.65020 [22] Golub, G.H.; de Pillis, J., Toward an effective two-parameter method, (), 107-118 [23] Greenbaum, A., Iterative methods for solving linear systems, (1997), SIAM Philadelphia, PA · Zbl 0883.65022 [24] Hadjidimos, A., Accelerated overrelaxation method, Math. comp., 32, 149-157, (1978) · Zbl 0382.65015 [25] Hadjidimos, A., The optimal solution to the problem of complex extrapolation of a first order scheme, Linear algebra appl., 62, 241-261, (1984) · Zbl 0567.65015 [26] Hadjidimos, A., On the optimization of the classical iterative schemes for the solution of complex singular linear systems, SIAM J. algebra discrete methods, 6, 555-566, (1985) · Zbl 0582.65017 [27] Hadjidimos, A., A survey of the iterative methods for the solution of linear systems by extrapolation, relaxation and other techniques, J. comput. appl. math., 20, 37-51, (1987) · Zbl 0635.65027 [28] A. Hadjidimos, X.-Z. Li, R.S. Varga, Application of the Schur-Cohn theorem to precise convergence domains for the cyclic SOR iterative method, unpublished manuscript, 1985. [29] Hadjidimos, A.; Neumann, M., Precise domains of convergence for the block SSOR method associated with p-cyclic matrices, Bit, 29, 311-320, (1989) · Zbl 0677.65030 [30] Hadjidimos, A.; Neumann, M., Convergence domains of the SSOR method for generalized consistently ordered matrices, J. comput. appl. math., 33, 35-52, (1990) · Zbl 0716.65027 [31] Hadjidimos, A.; Neumann, M., Euclidean norm minimization of the SOR operators, SIAM J. matrix anal. appl., 19, 191-204, (1998) · Zbl 0915.65025 [32] Hadjidimos, A.; Noutsos, D., The Young-eidson algorithm: applications and extensions, SIAM J. matrix anal. appl., 11, 620-631, (1990) · Zbl 0739.65028 [33] Hadjidimos, A.; Noutsos, D., On a matrix identity connecting iteration operators associated with a p-cyclic matrix, Linear algebra appl., 182, 157-178, (1993) · Zbl 0777.65018 [34] Hadjidimos, A.; Noutsos, D.; Tzoumas, M., Exact SOR convergence regions for a general class of p-cyclic matrices, Bit, 35, 469-487, (1995) · Zbl 0839.65035 [35] Hadjidimos, A.; Noutsos, D.; Tzoumas, M., On the exact p-cyclic SSOR convergence domains, Linear algebra appl., 232, 213-236, (1996) · Zbl 0840.65020 [36] Hadjidimos, A.; Noutsos, D.; Tzoumas, M., On the convergence domains of the p-cyclic SOR, J. comput. appl. math., 72, 63-83, (1996) · Zbl 0859.65025 [37] Hadjidimos, A.; Noutsos, D.; Tzoumas, M., Towards the determination of the optimal p-cyclic SSOR, J. comput. appl. math., 90, 1-14, (1997) · Zbl 0934.65037 [38] Hadjidimos, A.; Plemmons, R.J., Optimal p-cyclic SOR, Numer. math., 67, 475-490, (1994) · Zbl 0803.65032 [39] Hadjidimos, A.; Psimarni, A.; Yeyios, A.K., On the convergence of the modified accelerated overrelaxation (MAOR) method, Applied numer. math., 10, 115-127, (1992) · Zbl 0754.65035 [40] Hadjidimos, A.; Saridakis, Y.G., Modified successive overrelaxation (MSOR) and equivalent 2-step iterative methods for collocation matrices, J. comput. appl. math., 42, 375-393, (1992) · Zbl 0760.65031 [41] Hadjidimos, A.; Yeyios, A., Symmetric accelerated overrelaxation (SAOR) method, Math. comput. simulation, XXIV, 72-76, (1982) · Zbl 0476.65022 [42] Hadjidimos, A.; Yeyios, A., On some extensions of the accelerated overrelaxation (AOR) theory, Internat. J. math. math. sci., 5, 49-60, (1982) · Zbl 0497.65016 [43] Hadjidimos, A.; Yeyios, A.K., Some recent results on the modified SOR theory, Linear algebra appl., 154-156, 5-21, (1991) · Zbl 0731.65019 [44] Hageman, L.A.; Young, D.M., Applied iterative methods, (1981), Academic Press New York · Zbl 0459.65014 [45] Henrici, P., Applied and computational complex analysis, (1974), Wiley New York [46] Kahan, W., Gauss – seidel methods of solving large systems of linear equations, doctoral thesis, (1958), University of Toronto Toronto, Canada [47] Kincaid, D.R., Norms of the successive overrelaxation method, Math. comp., 118, 345-357, (1972) · Zbl 0251.65026 [48] Kincaid, D.R.; Respess, J.R.; Young, D.M.; Grimes, R.G., ITPACK 2C: a Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods, ACM trans. math. software, 8, 302-322, (1992) · Zbl 0485.65025 [49] Kincaid, D.R.; Young, D.M., The modified successive overrelaxation method with fixed parameters, Math. comp., 119, 705-717, (1972) · Zbl 0264.65029 [50] Kjellberg, G., On the convergence of the successive over-relaxation applied to a class of linear systems of equations with complex eigenvalues, Ericsson technics Stockholm, 2, 245-258, (1958) [51] Kontovasilis, K.; Plemmons, R.J.; Stewart, W.J., Block cyclic SOR for Markov chains with p-cyclic infinitesimal generator, Linear algebra appl., 154-156, 145-223, (1991) · Zbl 0736.65094 [52] Kredell, B., On complex successive overrelaxation, Bit, 2, 143-152, (1962) · Zbl 0112.07602 [53] Kuznetsov, Y.A., Matrix iterative methods in subspaces, Proceedings of the international congress of mathematicians, warszawa, August 16-24, 1983, (1984), North Holland Amsterdam · Zbl 0569.65025 [54] Li, X.; Varga, R.S., A note on the SSOR and USSOR iterative methods applied to p-cyclic matrices, Numer. math., 56, 109-121, (1989) · Zbl 0678.65021 [55] Lynn, M.S., On the equivalence of SOR, SSOR and USSOR as applied to σ1-ordered systems of linear equations, Comput. J., 7, 72-75, (1964) · Zbl 0134.32705 [56] Manteuffel, T.A., An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters, Utucsd-r-75, (1975), Department of Computer Science, University of Illinois Urbana, IL [57] Manteuffel, T.A., The tchebychev iteration for non-symmetric linear systems, Numer. math., 28, 307-327, (1977) · Zbl 0361.65024 [58] Manteuffel, T.A., Adaptive procedure for estimating parameters for the non-symmetric tchebychev iteration, Numer. math., 31, 183-208, (1978) · Zbl 0413.65032 [59] Manteuffel, T.A., Optimal parameters for linear second-degree stationary iterative methods, SIAM J. numer. anal., 19, 833-839, (1982) · Zbl 0486.65020 [60] Markham, T.L.; Neumann, M.; Plemmons, R.J., Convergence of a direct-iterative method for large-scale least squares problems, Linear algebra appl., 69, 155-167, (1985) · Zbl 0576.65026 [61] L.K. McDowell, Variable successive overrelaxation, Report No. 244, Department of Computer Sciences, University of Illinois, Urbana, IL. [62] Missirlis, N.M., Convergence theory of extrapolated iterative methods for a certain class of non-symmetric linear systems, Numer. math., 45, 447-458, (1984) · Zbl 0535.65016 [63] Neumaier, A.; Varga, R.S., Exact convergence and divergence domains for the symmetric successive overrelaxation iterative (SSOR) method applied to H-matrices, Linear algebra appl., 58, 261-272, (1984) · Zbl 0569.65021 [64] Nichols, N.K.; Fox, L., Generalized consistent ordering and the optimum successive over-relaxation factor, Numer. math., 13, 425-433, (1969) · Zbl 0172.42502 [65] Niethammer, W., On different splittings and the associated iteration methods, SIAM J. numer. anal., 16, 186-200, (1979) · Zbl 0406.65011 [66] Niethammer, W., Relaxation bei matrizen mit der eigenschaft “A”, Z. angew. math. mech., 44, T49-T52, (1964) · Zbl 0137.33001 [67] Niethammer, W.; de Pillis, J.; Varga, R.S., Convergence of block iterative methods applied to sparse least squares problems, Linear algebra appl., 58, 327-341, (1984) · Zbl 0565.65019 [68] Niethammer, W.; Varga, R.S., The analysis of k-step iterative methods for linear systems from summability theory, Numer. math., 41, 177-206, (1983) · Zbl 0487.65018 [69] Noutsos, D., Optimal stretched parameters for the SOR iterative method, J. comput. appl. math., 48, 293-308, (1993) · Zbl 0797.65025 [70] Noutsos, D., An operator relation of the USSOR and the Jacobi iteration matrices of a p-cyclic matrix, SIAM J. matrix. anal. appl., 17, 515-529, (1996) · Zbl 0855.65018 [71] Opfer, G.; Schober, G., Richardson’s iterations for nonsymmetric matrices, Linear algebra appl., 58, 343-361, (1984) · Zbl 0565.65012 [72] Pierce, D.J.; Hadjidimos, A.; Plemmons, R.J., Optimality relationships for p-cyclic SOR, Numer. math., 56, 635-643, (1990) · Zbl 0687.65034 [73] Russell, D.B., On obtaining solutions to navier – stokes equations with automatic digital computers, (1963), Aeronautical Research Council Report R & M 3331 Engineering Laboratory Oxford [74] Saridakis, Y.G., Generalized consistent orderings and the accelerated overrelaxation method, Bit, 26, 369-376, (1986) · Zbl 0605.65017 [75] Saridakis, Y.G., On the analysis of the unsymmetric overrelaxation method when applied to p-cyclic matrices, Numer. math., 49, 461-473, (1986) · Zbl 0579.65025 [76] Sisler, M., Uber ein zweiparametrigen iterationsverfahrens, Apl. mat., 18, 325-332, (1973) · Zbl 0267.65024 [77] Sisler, M., Uber die optimierung eines zweiparametrigen iterationsverfahrens, Apl. mat., 20, 126-142, (1975) · Zbl 0313.65028 [78] Sisler, M., Bemerkungen zur optimierung eines zweiparametrigen iterationsverfahrens, Apl. mat., 21, 213-220, (1976) · Zbl 0339.65019 [79] Southwell, R.V., Relaxation methods in theoretical physics, (1946), Clarendon Press Oxford · Zbl 0061.27706 [80] Tall, D.O., Functions of a complex variable, (1970), Library of Mathematics, Routledge & Kegan Paul London · Zbl 0222.30001 [81] Taylor, P.J., A generalisation of systematic relaxation methods for consistently ordered matrices, Numer. math., 13, 377-395, (1969) · Zbl 0257.65038 [82] Varga, R.S., p-cyclic matrices: a generalization of the Young-frankel successive overrelaxation scheme, Pacific J. math., 9, 617-628, (1959) · Zbl 0088.09402 [83] Varga, R.S., Matrix iterative analysis, (1962), Prentice-Hall Englewood Cliffs, NJ · Zbl 0133.08602 [84] Varga, R.S., Extensions of the successive overrelaxation theory with applications to finite element approximations, (), 242-247 [85] R.S. Varga, Personal communication (also, revision of [83], 1999). [86] Varga, R.S.; Niethammer, W.; Cai, D.Y., p-cyclic matrices and the symmetric successive overrelaxation method, Linear algebra appl., 58, 425-439, (1984) · Zbl 0569.65022 [87] Verner, J.H.; Bernal, M.J.M., On generalizations of the theory of consistent orderings for successive overrelaxation methods, Numer. math., 12, 215-222, (1968) · Zbl 0172.18802 [88] Wild, P.; Niethammer, W., Over and underrelaxation for linear systems with weakly cyclic Jacobi matrices of index p, Linear algebra appl., 91, 29-52, (1987) · Zbl 0624.65027 [89] Wrigley, E.E., On accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex, Comput. J., 6, 169-176, (1963) · Zbl 0131.14201 [90] Young, D.M., Iterative methods for solving partial differential equations of elliptic type, doctoral thesis, (1950), Harvard University Cambridge, MA [91] Young, D.M., Iterative methods for solving partial differential equations of elliptic type, Trans. amer. math. soc., 76, 92-111, (1954) · Zbl 0055.35704 [92] Young, D.M., Convergence properties of the symmetric and unsymmetric successive overrelaxation methods and related methods, Math. comp., 112, 793-807, (1970) · Zbl 0221.65060 [93] Young, D.M., Iterative solution of large linear systems, (1971), Academic Press New York · Zbl 0204.48102 [94] Young, D.M.; Eidson, H.E., On the determination of the optimum relaxation factor for the SOR method when the eigenvalues of the Jacobi matrix are complex, Report CNA-1, (1970), Center for Numerical Analysis, University of Texas Austin, TX [95] Young, D.M.; Kincaid, D.R., Norms of the successive overrelaxation method and related methods, Report TNN-94, (1969), Computation Center, University of Texas Austin, TX This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.