zbMATH — the first resource for mathematics

Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for a nonlinear Euler-Poisson system. (English) Zbl 0965.65113
The paper deals with the Euler-Poisson system \[ \begin{aligned} \partial_t n+\partial_x(nu)&=0,\\ \partial_t(nu)+\partial_x(nu^2+p(n))&=-\sigma n(u-u_*)-n\partial_x\varphi,\\ -\partial_{xx}^2\varphi& = n - f(\varphi)+b. \end{aligned} \] where \(p\) obeys a gamma law with \(\gamma>1\), \(f\) is an increasing function of the electric potential \(\varphi\) (vanishing at \(0\) and unbounded at \(\infty\)), \(\sigma\) and \(u_*\) are given bounded functions of \(x\) with \(\sigma\geq 0\), and \(b\) is a bounded integrable function of \(x\) on the whole real line. This system is endowed with bounded initial data \(n_0\), \(u_0\) with \(n_0\) being nonnegative and compactly supported, together with homogeneous boundary condition for \(\varphi\) at \(\infty\). The main result is the global existence of weak entropy solutions.
A similar result was previously shown by the author and S. Cordier [RAIRO, Model. Math. Anal. Numer. 32, No. 1, 1-23 (1998; Zbl 0935.35119)] in the isothermal case (\(\gamma=1\)). The proof is based on a careful analysis of the nonlinear Poisson equation and finite difference approximations of the Euler equations. Convergence is inspired from works by G. Q. Chen and co-workers on isentropic gas dynamics.
Reviewer: S.Benzoni (Lyon)

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
78A35 Motion of charged particles
Full Text: DOI
[1] G.Q. Chen, The theory of compensated compactness and the system of isentropic gas dynamics, preprint, MCS-P154-0590, Univ. of Chicago, 1990.
[2] Chen, G.Q., Convergence of Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta math. sci., 6, 75-120, (1986) · Zbl 0643.76086
[3] S. Cordier, Modélisation mathématique et simulation numérique du plasma magnétosphérique, Ph.D. Thesis, Ecole Normale Supérieure de Cachan, Paris, 1994.
[4] Cordier, S.; Peng, Y.J., Système Euler-Poisson non linéaire – existence globale de solutions faibles entropiques, Mod. math. anal. num., 32, 1, 1-23, (1998) · Zbl 0935.35119
[5] X. Ding , G.Q. Chen, P. Luo, Convergence of Lax-Friedrichs scheme for isentropic gas dynamics (I) (II), Acta Math. Sci., 5, (1985) 483-500, 501-540.
[6] Ding, X.; Chen, G.Q.; Luo, P., Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for isentropic gas dynamics, Comm. math. phys., 121, 63-84, (1989) · Zbl 0689.76022
[7] DiPerna, R.J., Convergence of approximate solutions of conservation laws, Arch. rat. mech. anal., 82, 27-70, (1983) · Zbl 0519.35054
[8] S. Fabre, Etude de l’équation de Poisson couplé à la relation de Boltzmann dans \(R\^{}\{N\}\) et quasineutralité, C.R. Acad. Sci. Paris, Série I, t. 320, 1995, 45-48. · Zbl 0831.76099
[9] Jüngel, A., On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. mod. meth. appl. sci., 4, 5, 677-703, (1994) · Zbl 0820.35128
[10] Jüngel, A., A nonlinear drift-diffusion system with electric convection arising in electrophoretic and semiconductor modeling, Math. nachr., 185, 85-110, (1997) · Zbl 1157.35406
[11] A. Jüngel, Y.J. Peng, A hierarchy of hydrodynamics models for plasmas, in preparation.
[12] Lions, P.L.; Perthame, B.; Souganidis, P.E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in eulerian and Lagrangian coordinates, Comm. pure appl. math., 49, 599-638, (1996) · Zbl 0853.76077
[13] Lions, P.L.; Perthame, B.; Tadmor, E., Kinetic formulation for the isentropic gas dynamics and p-system, Comm. math. phys., 163, 415-431, (1994) · Zbl 0799.35151
[14] Liu, T.P.; Smoller, J., The vacuum state in non-isentropic gas dynamics, Adv. appl. math., 1, 345-359, (1980) · Zbl 0461.76055
[15] Liu, T.P.; Smoller, J., Le problème du vide pour LES équations de la dynamique des gaz isentropiques, Res. notes math., 60, 319-326, (1981)
[16] Marcati, P.; Natalini, R., Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. roy. soc. Edinburgh sect. A, 125, 115-131, (1995) · Zbl 0831.35157
[17] Marcati, P.; Natalini, R., Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. rat. mech. anal., 129, 129-145, (1995) · Zbl 0829.35128
[18] P.A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, Vienna/New-York, 1990. · Zbl 0765.35001
[19] Natalini, R., The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. math. anal. appl., 198, 262-281, (1996) · Zbl 0889.35109
[20] Murat, F., Compacité par compensation, Ann. sc. norm. sup. Pisa, 5, 489-507, (1978) · Zbl 0399.46022
[21] Poupaud, F.; Rascle, M.; Vila, J.P., Global solutions to the isothermal euler – poisson system with arbitrary large data, J. differental equations, 123, 93-121, (1995) · Zbl 0845.35123
[22] J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer, Berlin, 1983. · Zbl 0508.35002
[23] L. Tartar, Compensated compactness and applications to partial differential equations, in: R.J. Knops (Ed.), Research Note in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, vol. 4, Pitman Press, New York, 1979, pp. 136-212. · Zbl 0437.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.