zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on controllability of impulsive systems. (English) Zbl 0965.93015
This article investigates complete controllability of the control system with impulse effects $$x'(t)= A(t)x(t)+ B(t) u(t)+ f(t, x(t)),\quad t\ne t_k,\quad t\in [t_0,T],$$ $$x(t_k+)= (I+ D^ku(t_k)) x(t_k),\quad x(t_0)= x_0,$$ where, for each $t\in [t_0, T]$, the state $x(t)$ is an $n$-vector, the control $u(t)$ is an $m$-vector, $A(t)$ and $B(t)$ are $n\times n$ and $n\times m$ matrices, respectively, with piecewise continuous entries, and $0< t_1< t_2<\cdots< t_\rho< T$ are the time points when the impulsive controls $u(t_k)$ act. For each $k=1,2,\dots,\rho$, $D^ku(t_k)$ is an $n\times n$ diagonal matrix such that $$D^ku(t_k)= \sum^m_{i=1} d^k_i u_i(t_k)I,$$ where $I$ is the identity matrix on $\bbfR^n$ and $d^k_i\in \bbfR$.

34A37Differential equations with impulses
Full Text: DOI
[1] Brockett, R. W.: Finite dimensional linear systems. (1970) · Zbl 0216.27401
[2] R. K. George, A class of admissible perturbations which preserves controllability of linear systems, submitted for publication.
[3] Granas, A.: On a certain class of non-linear mappings in Banach spaces. Bull. acad. Polon. sci. 9, 867-871 (1957) · Zbl 0078.11701
[4] Joshi, M. C.; George, R. K.: Controllability of nonlinear systems. Numer. funct. Anal. optim. 10, 139-166 (1989) · Zbl 0676.93008
[5] Lakshmikantham, V.; Bainov, D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[6] Leela, S.; Mcrae, F. A.; Sivasundaram, S.: Controllability of impulsive differential equations. J. math. Anal. appl. 177, 24-30 (1993) · Zbl 0785.93016