×

Essential divisors, essential components of singular toric varieties. (Diviseurs essentiels, composantes essentielles des variétés toriques singulières.) (French) Zbl 0966.14038

Let \(V\) be a normal affine (irreducible) toric variety and \(\pi:X\to V\) a desingularisation of \(V\). A divisor \(D\) of \(X\) is said to be essential if the image of \(D\) on any desingularisation of \(V\) has codimension one. One says that \(D\) is an essential component if the image of \(D\) on any desingularisation \(\pi':X'\to V\) is an irreducible component (not necessarily of codimension one) of the fibre \({\pi'}^{-1} \pi(D)\). In a previous paper in collaboration with \(G\). Gonzalez-Sprinberg, the authors gave a combinatorical characterisation of divisors which are essential only for equivariant desingularisations of \(V\). The first result states that if a prime divisor of an equivariant desingularisation is essential for equivariant desingularisations, then it is essential. This provides a complete description of essential divisors of \(V\). When \(\pi\) is equivariant, the second result gives a combinatorical condition for a prime equivariant divisor of \(X\) to be an essential component. This condition is written in terms of points in the lattice of one-parameter groups of \(V\). The paper contains two enlightening examples.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14C20 Divisors, linear systems, invertible sheaves
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] C. Bouvier, Germes de courbes tracées sur une variété torique singulière et diviseurs essentiels , C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 387-390. · Zbl 0846.14031
[2] C. Bouvier and G. Gonzalez-Sprinberg, Système générateur minimal, diviseurs essentiels et \(G\)-désingularisations de variétés toriques , Tohoku Math. J. (2) 47 (1995), no. 1, 125-149. · Zbl 0823.14006
[3] J. Fine, On varieties isomorphic in codimension one to torus embeddings , Duke Math. J. 58 (1989), no. 1, 79-88. · Zbl 0708.14035
[4] G. Gonzalez-Sprinberg and M. Lejeune-Jalabert, Sur l’espace des courbes tracées sur une singularité , Algebraic geometry and singularities (La Rábida, 1991), Progr. Math., vol. 134, Birkhäuser, Basel, 1996, pp. 9-32. · Zbl 0862.14003
[5] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I , Lecture Notes in Math., Springer-Verlag, Berlin, 1973. · Zbl 0271.14017
[6] M. Lejeune-Jalabert, Arcs analytiques et resolution minimale des singularités des surfaces quasi homogènes , Séminaire sur les Singularités des Surfaces (Palaiseau, 1976-1977), Lecture Notes in Math., vol. 777, Springer-Verlag, Berlin, 1980, pp. 303-336. · Zbl 0432.14020
[7] J. Nash, Jr., Arc structure of singularities , Duke Math. J. 81 (1995), no. 1, 31-38 (1996). · Zbl 0880.14010
[8] O. Zariski and P. Samuel, Commutative algebra. Vol. II , The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.