Horstmann, Dirk Lyapunov functions and \(L^p\)-estimates for a class of reaction-diffusion systems. (English) Zbl 0966.35022 Colloq. Math. 87, No. 1, 113-127 (2001). Summary: We give a sufficient condition for the existence of a Lyapunov function for the system \[ \begin{aligned} a_t&=\nabla(k(a,c)\nabla a-h(a,c)\nabla c), \quad\;x\in{\Omega},\;t>0,\\ \varepsilon c_t&=k_c{\Delta} c-f(c)c+g(a,c),\;x\in{\Omega}, \;t>0,\end{aligned} \] for \({\Omega} \subset {\mathbb R}^N\), completed with either \(a=c=0\), or \[ \frac{\partial a}{\partial n}=\frac{\partial c}{\partial n} =0,\quad \text{ or }\quad k(a,c)\frac{\partial a}{\partial n}=h(a,c)\frac{\partial c}{\partial n}, \quad c=0\;\text{ on } \partial{\Omega} \times\{t>0\}. \] Furthermore we study the asymptotic behaviour of the solution and give some uniform \(L^p\)-estimates. Cited in 27 Documents MSC: 35B45 A priori estimates in context of PDEs 35B40 Asymptotic behavior of solutions to PDEs 35K50 Systems of parabolic equations, boundary value problems (MSC2000) 35K55 Nonlinear parabolic equations 35K57 Reaction-diffusion equations 35A07 Local existence and uniqueness theorems (PDE) (MSC2000) Keywords:asymptotic behaviour of solution; uniform \(L^p\)-estimates PDF BibTeX XML Cite \textit{D. Horstmann}, Colloq. Math. 87, No. 1, 113--127 (2001; Zbl 0966.35022) Full Text: DOI OpenURL