zbMATH — the first resource for mathematics

Finite volume box schemes and mixed methods. (English) Zbl 0966.65082
This paper deals with the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume (FV) schemes for equations in divergence form \(\text{div }\varphi(u,\nabla u)= f\). The author introduces the mixed formulation of which the “FVbox” scheme is an approximation. This formulation generates also a second scheme (called “dual FVbox”) which is a cell-centered finite volume scheme for the couple of unknowns \((u,\nabla u)\). The two test spaces are the functions constant per cell both for the conservative and for the flux equations. Also an optimal second-order error estimate for the box scheme is presented.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI Link EuDML
[1] B. Achchab, A. Agouzal, J. Baranger and J-F. Maître, Estimateur d’erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math.80 (1998) 159-179. Zbl0909.65076 · Zbl 0909.65076 · doi:10.1007/s002110050364
[2] D.N. Arnold and F. Brezzi, Mixed and non-conforming finite elements methods: implementation, postprocessing and error estimates. RAIRO - Modél. Math. Anal. Numér.19 (1985) 7-32. Zbl0567.65078 · Zbl 0567.65078 · eudml:193443
[3] I. Babuska, Error-Bounds for Finite Elements Method. Numer. Math.16 (1971) 322-333. · eudml:132037
[4] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal.24 (1987) 777-787. · Zbl 0634.65105 · doi:10.1137/0724050
[5] J. Baranger, J.F. Maître and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO - Modél. Math. Anal. Numér.30 (1996) 445-465. · Zbl 0857.65116 · eudml:193811
[6] C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application à une méthode de collocation pour les équations de Stokes. C. R. Acad. Sci. Paris, t.303, Série I19 (1986) 971-974. Zbl0612.49004 · Zbl 0612.49004
[7] C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal.25 (1988) 1237-1271. Zbl0666.76055 · Zbl 0666.76055 · doi:10.1137/0725070
[8] D. Braess, Finite Elements. Cambridge Univ. Press (1997). · Zbl 0870.65097
[9] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts Appl. Math.15 (1994) Springer, New-York. · Zbl 0804.65101
[10] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems, arising from lagrangian multipliers. RAIRO8 (1974) R-2, 129-151. Zbl0338.90047 · Zbl 0338.90047 · eudml:193255
[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series Comp. Math.15, Springer Verlag, New-York (1991). Zbl0788.73002 · Zbl 0788.73002
[12] F. Brezzi, J. Douglas and L.D. Marini, Two families of Mixed Finite Element for second order elliptic problems. Numer. Math.47 (1985) 217-235. · Zbl 0599.65072 · doi:10.1007/BF01389710 · eudml:133032
[13] Z. Cai, J. Mandel and S. McCormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal.28 (1991) 392-402. · Zbl 0729.65086 · doi:10.1137/0728022
[14] F. Casier, H. Deconninck and C. Hirsch, A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler’s equations. AIAA-83-0126 (1983).
[15] J.J. Chattot, Box-schemes for First Order Partial Differential Equations. Adv. Comp. Fluid Dynamics, Gordon Breach Publ. (1995) 307-331.
[16] J.J. Chattot, A Conservative Box-scheme for the Euler Equations. Int. J. Num. Meth. Fluids (to appear). · Zbl 0985.76063
[17] J.J. Chattot and S. Malet, A box-schemefor the Euler equations. Lect. Notes Math.1270, Springer-Verlag, Berlin (1987) 82-99. · Zbl 0626.65088
[18] Y. Coudière, J-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. Math. Model. Numer.33 (1999) 493-516. · Zbl 0937.65116 · doi:10.1051/m2an:1999149 · publish.edpsciences.org · eudml:197561
[19] B. Courbet, Schémas boîte en réseau triangulaire, Rapport technique 18/3446 EN (1992), ONERA, unpublished.
[20] B. Courbet, Schémas à deux points pour la simulation numérique des écoulements, La Recherche Aérospatiale n^\circ 4 (1990) 21-46. Zbl0708.76105 · Zbl 0708.76105
[21] B. Courbet, Étude d’une famille de schémas boîtes à deux points et application à la dynamique des gaz monodimensionnelle, La Recherche Aérospatiale n^\circ 5 (1991) 31-44.
[22] B. Courbet and J.P. Croisille, Finite Volume Box Schemes on triangular meshes. Math. Model. Numer.32 (1998) 631-649. Zbl0920.65065 · Zbl 0920.65065 · eudml:193889
[23] J-P. Croisille, Finite Volume Box Schemes, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications. Hermes, Paris (1999). · Zbl 1052.65550
[24] M. Crouzeix and P.A. Raviart, Conforming and non conforming finite element methods for solving the stationary Stokes equations I. RAIRO7 (1973) R-3, 33-76. · Zbl 0302.65087 · eudml:193250
[25] F. Dubois, Finite volumes and mixed Petrov-Galerkin finite elements; the unidimensional problem. Num. Meth. PDE (to appear). · Zbl 0954.65062 · doi:10.1002/(SICI)1098-2426(200005)16:3<335::AID-NUM5>3.0.CO;2-X
[26] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Ciarlet-Lions Eds. 5 (1997). · Zbl 0982.65122
[27] G. Fairweather and R.D. Saylor, The reformulation and numerical solution of certain nonclassical initial-boundary value problems. SIAM J. Sci. Stat. Comput.12 (1991) 127-144. Zbl0722.65062 · Zbl 0722.65062 · doi:10.1137/0912007
[28] L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler equations on unstructured grids. J. Comp. Phys.84 (1989) 174-206. Zbl0677.76062 · Zbl 0677.76062 · doi:10.1016/0021-9991(89)90187-3
[29] V. Girault and P.A. Raviart, Finite Element Approximation of the Navier-Stokes equations. Lect. Notes Math.749, Springer, Berlin (1979). · Zbl 0413.65081 · doi:10.1007/BFb0063447
[30] W. Hackbusch, On first and second order box schemes. Computing41 (1989) 277-296. · Zbl 0649.65052 · doi:10.1007/BF02241218
[31] H.B. Keller, A new difference scheme for parabolic problems, Numerical solutions of partial differential equations, II, B. Hubbard Ed., Academic Press, New-York (1971) 327-350. · Zbl 0243.65060
[32] R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Coupling mixed and finite volume discretizations of convection-diffusion-reaction equations on non-matching grids, in Proc. of the 2nd Int. Symp. on Finite Volume for Complex Applications, Hermes, Paris (1999). · Zbl 1052.65554
[33] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal.22 (1985) 493-496. · Zbl 0573.65082 · doi:10.1137/0722029
[34] P.C. Meek and J. Norbury, Nonlinear moving boundary problems and a Keller box scheme. SIAM J. Numer. Anal.21 (1984) 883-893. Zbl0558.65087 · Zbl 0558.65087 · doi:10.1137/0721057
[35] R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal.19 (1982) 349-357. Zbl0485.65049 · Zbl 0485.65049 · doi:10.1137/0719021
[36] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems. Lect. Notes Math.606, Springer-Verlag, Berlin (1977) 292-315. · Zbl 0362.65089
[37] E. Süli, Convergence of finite volume schemes for Poisson’s equation on non-uniform meshes. SIAM J. Numer. Anal.28 (1991) 1419-1430. · Zbl 0802.65104 · doi:10.1137/0728073
[38] E. Süli, The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. of Comp.59 (1992) 359-382. · Zbl 0767.65072 · doi:10.2307/2153062
[39] T. Schmidt, Box Schemes on quadrilateral meshes. Computing51 (1993) 271-292. · Zbl 0787.65075 · doi:10.1007/BF02238536
[40] J-M Thomas and D. Trujillo, Mixed Finite Volume methods. Int. J. Num. Meth. Eng.45 (1999) to appear. · Zbl 0948.65125
[41] S.F. Wornom, Application of compact difference schemes to the conservative Euler equations for one-dimensional flows. NASA Tech. Mem.83262 (1982).
[42] S.F. Wornom and M.M. Hafez, Implicit conservative schemes for the Euler equations. AIAA J.24 (1986) 215-233. · Zbl 0591.76108 · doi:10.2514/3.9248
[43] A. Younes, R. Mose, P. Ackerer and G. Chavent, A new formulation of the Mixed Finite Element Method for solving elliptic and parabolic PDE. J. Comp. Phys.149 (1999) 148-167. · Zbl 0923.65064 · doi:10.1006/jcph.1998.6150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.