×

Revisiting brittle fracture as an energy minimization problem. (English) Zbl 0966.74060

Summary: We propose a variational model of quasistatic crack evolution. Although close in spirit to Griffith’s theory of brittle fracture, the proposed model, however, frees itself from the usual constraints of that theory: a preexisting crack and a well-defined crack path. In contrast, crack initiation as well as crack path can be quantified, as demonstrated on explicitly computable examples. Furthermore, the model lends itself to numerical implementation in more complex settings.

MSC:

74R10 Brittle fracture
74G65 Energy minimization in equilibrium problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosio, L., Acta Appl. Math., 17, 1 (1989) · Zbl 0697.49004
[2] Ambrosio, L., Coscia, A. and Dal Maso, G. (to appear) Fine properties of functions with bounded deformations.; Ambrosio, L., Coscia, A. and Dal Maso, G. (to appear) Fine properties of functions with bounded deformations.
[3] Ambrosio, L.; Tortorelli, V. M., Comm. Pure Appl. Math., 43, 999 (1990) · Zbl 0722.49020
[4] Amestoy, M. (1987) Propagations de fissures en élasticité plane. Thèse d’Etat, Paris.; Amestoy, M. (1987) Propagations de fissures en élasticité plane. Thèse d’Etat, Paris.
[5] Amestoy, M.; Leblond, J.-B., International Journal of Solids and Structures, 29, 465 (1989) · Zbl 0755.73072
[6] Ball, J. M.; James, R. D., Archives for Rational Mechanics and Analysis, 110, 13 (1987)
[7] Barenblatt, G. I., Advances in Applied Mechanics, 7, 55 (1962) · Zbl 0127.00205
[8] Belletini, G.; Coscia, A., Num. Funct. Anal. Optim., 15, 201 (1994) · Zbl 0806.49002
[9] Bourdin, B. (to appear in \(M^2\); Bourdin, B. (to appear in \(M^2\) · Zbl 0947.65075
[10] Carriero, M.; Leaci, A., Nonlinear Anal. Th. Meth. Appls., 15, 661 (1990) · Zbl 0713.49003
[11] DeGiorgi, E.; Carriero, M.; Leaci, A., Archives for Rational Mechanics and Analysis, 108, 195 (1989) · Zbl 0682.49002
[12] Ehrlacher, A. and Fedelich, B. (1989) Stability and bifurcation of simple dissipative systems ; application to brutal damage. In Cracking and Damage : Strain Localization and Size Effect; Ehrlacher, A. and Fedelich, B. (1989) Stability and bifurcation of simple dissipative systems ; application to brutal damage. In Cracking and Damage : Strain Localization and Size Effect
[13] Evans, L. C. and Gariepy, R. F. (1992) Measure Theory and Fine Properties of Functions; Evans, L. C. and Gariepy, R. F. (1992) Measure Theory and Fine Properties of Functions · Zbl 0804.28001
[14] Fonseca, I.; Francfort, G. A., Calculus of Variations, 3, 407 (1995)
[15] Fonseca, I. and Fusco, N. (to appear) Regularity results for anisotropic image segmentation models.; Fonseca, I. and Fusco, N. (to appear) Regularity results for anisotropic image segmentation models. · Zbl 0899.49018
[16] Francfort, G. A.; Marigo, J. J., Eur. J. Mech. A\Solids, 12, 149 (1993) · Zbl 0772.73059
[17] Francfort, G. A. and Marigo, J. J. (to appear) Cracks in fracture mechanics : a time-indexed family of energy minimizers. In Proceedings of the International IUTAM Symposium; Francfort, G. A. and Marigo, J. J. (to appear) Cracks in fracture mechanics : a time-indexed family of energy minimizers. In Proceedings of the International IUTAM Symposium
[18] Griffith, A. (1920) The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. LondonCCXXI-A,; Griffith, A. (1920) The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. LondonCCXXI-A,
[19] Hashin, Z., Journal of the Mechanics and Physics of Solids, 44, 1129 (1996)
[20] James, R. and Kinderlehrer, D. (1993) Theory of magnetostriction with application to Tb\(_x}y_{1−x }_2 Philosophical Magazine \textbf{B68,} \); James, R. and Kinderlehrer, D. (1993) Theory of magnetostriction with application to Tb\(_x}y_{1−x }_2 Philosophical Magazine \textbf{B68,} \)
[21] Leblond, J.-B., International Journal of Solids and Structures, 25, 1311 (1989) · Zbl 0703.73062
[22] Leguillon, D., C.R. Acad. Sci. Paris Série II, 309, 945 (1990)
[23] Leguillon, D., C.R. Acad. Sci. Paris Série II, 310, 155 (1990) · Zbl 0685.73048
[24] Mumford, D.; Shah, J., Comm. Pure Applied Math., 42, 577 (1989) · Zbl 0691.49036
[25] Nguyen, Q. S., Journal of Mechanics and Physics of Solids, 35, 303 (1987) · Zbl 0608.73091
[26] Sih, G. C. and Liebowitz, H. (1968) Mathematical theories of brittle fracture. In Fracture : An Advanced Treatise, Vol. II, Mathematical Fundamentals; Sih, G. C. and Liebowitz, H. (1968) Mathematical theories of brittle fracture. In Fracture : An Advanced Treatise, Vol. II, Mathematical Fundamentals · Zbl 0207.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.