×

zbMATH — the first resource for mathematics

On limit theorems in fuzzy quantum spaces. (English) Zbl 0966.81011
Summary: Two kinds of fuzzy connectives are used for constructing two models of quantum mechanics. In the framework some versions of the weak law of large numbers and the central limit theorem are presented.

MSC:
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
60F05 Central limit and other weak theorems
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belluce, L.P., Semisimple algebras of infinite valued logic and bold fuzzy set theory, Can. J. math., 38, 1356-1379, (1986) · Zbl 0625.03009
[2] Chang, C.C., Algebraic analysis of many valued logics, Trans. amer. math. soc., 88, 467-490, (1958) · Zbl 0084.00704
[3] Dvurečenskij, A., On a representation of observables in fuzzy measurable spaces, J. math. anal. appl., 197, 579-585, (1996) · Zbl 0854.28010
[4] Dvurečenskij, A.; Chovanec, F., Fuzzy quantum spaces and compatibility, Internat. J. theoret. phys., 27, 1069-1082, (1988) · Zbl 0657.60004
[5] Dvurečenskij, A.; Riečan, B., Fuzzy quantum models, Internat. J. general systems, 20, 39-54, (1991) · Zbl 0746.60004
[6] Dvurečenskij, A.; Tirpáková, A., A note on a sum of observables in F-quantum spaces and its properties, Busefal, 35, 132-138, (1988) · Zbl 0662.03057
[7] Jakubík, J., Direct decomposition of MV-algebras, Czech. math. J., 44, 725-739, (1994) · Zbl 0821.06011
[8] Khalili, S., Fuzzy measures and mappings, J. math. anal. appl., 68, 92-99, (1979) · Zbl 0448.28002
[9] Klement, E.P., Construction of fuzzy σ-algebras using triangular norms, J. math. anal. appl., 85, 543-565, (1982) · Zbl 0491.28003
[10] Kolesárová, A.; Riečan, B., T-fuzzy observables, Tatra mountains math. publ., 1, 73-82, (1992) · Zbl 0788.60004
[11] Kôpka, F.; Chovanec, F., D-posets, Math. slovaca, 44, 21-34, (1994) · Zbl 0789.03048
[12] Mesiar, R., Fuzzy random variables, Geniko seminario mathematikon, 17, 51-67, (1992)
[13] Mesiar, R., Fuzzy observables, J. math. anal. appl., 174, 178-193, (1993) · Zbl 0777.60005
[14] Mesiar, R., Fuzzy observables and the ergodic theory, (), 383-390
[15] Mesiar, R., Fuzzy logics and observables, Internat. J. theoret. phys., 322, 1143-1151, (1993) · Zbl 0791.03038
[16] Mesiar, R.; Riečan, B., On the joint observable in some quantum structures, Tatra mountains math. publ., 3, 183-190, (1993) · Zbl 0806.28015
[17] Mundici, D., Interpretation of AFC^{∗}-algebras in lukasiewicz sentential calculus, J. funct. anal., 65, 15-63, (1986) · Zbl 0597.46059
[18] Navara, M.; Pták, P., States on soft fuzzy algebras - finite and countable additivity, Tatra mountains math. publ., 1, 125-134, (1992) · Zbl 0794.03088
[19] Piasecki, K., Probability of fuzzy events defined as denumerable additivity measure, Fuzzy sets and systems, 17, 271-284, (1985) · Zbl 0604.60005
[20] Pták, P.; Pulmannová, S., Orthomodular structures as quantum logics, (1991), Kluwer Dordrecht · Zbl 0743.03039
[21] J. Pykacz, Fuzzy sets in foundations of quantum mechanics, in: D. Dubois, R. Lowen. M. Roubens (Eds.), IFSA’91 Brussels, Computer Management and System Science, pp. 205-208.
[22] Riečan, B., A new approach to some notions of statistical quantum mechanics, Busefal, 35, 4-6, (1988)
[23] Riečan, B., On fuzzy models of quantum mechanics, (), 51-54
[24] Riečan, B., Law of large numbers in certain ordered structures, (), 288-292
[25] Riečan, B., Fuzzy connectives and quantum models, (), 335-338
[26] Riečan, B.; Neubrunn, T., Integral, measure, and ordering, (1997), Kluwer Dordrecht · Zbl 0916.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.