×

zbMATH — the first resource for mathematics

Applications of Kawamata’s positivity theorem. (English) Zbl 0967.14012
Summary: In this paper we treat some applications of Kawamata’s positivity theorem. We get a weak adjunction formula for fiber spaces. By using this formula we investigate the target spaces of some morphisms.

MSC:
14C20 Divisors, linear systems, invertible sheaves
14N30 Adjunction problems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] F. Ambro: The locus of log canonical singularities (1998) (preprint).
[2] F. Ambro: The adjunction conjecture and its applications. Ph.D. thesis, Johns Hopkins University (1999).
[3] F. Ambro: The adjunction conjecture and its applications (1999) (preprint).
[4] A. Corti: Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom., 4 , 223-254 (1995). · Zbl 0866.14007
[5] T. Fujita: Fractionally logarithmic canonical rings of surfaces. J. Fac. Sci. Univ. Tokyo., 30 , 685-696 (1984). · Zbl 0543.14004
[6] Y. Kawamata: Crepant blowing-up of 3-dimen-sional canonical singularities and its application to degenerations of surfaces. Ann. of Math., 127 , 93-163 (1988). · Zbl 0651.14005
[7] Y. Kawamata: On the length of an extremal rational curve. Invent. Math., 105 , 609-611 (1991). · Zbl 0751.14007
[8] Y. Kawamata: Subadjunction of log canonical divisors, II. Amer. J. Math., 120 , 893-899 (1998). · Zbl 0919.14003
[9] Y. Kawamata, K. Matsuda, and K. Matsuki: Introduction to the Minimal Model Problem, in Algebraic Geometry, Sendai 1985. Adv. Stud. in Pure Math., 10 , Kinokuniya and North-Holland, 283-360 (1987). · Zbl 0672.14006
[10] S. Keel, K. Matsuki, and J. McKernan: Log abundance theorem for threefolds. Duke Math. J., 75 , 99-119 (1994). · Zbl 0818.14007
[11] J. Kollár: Higher direct images of dualizing sheaves I. Ann. of Math., 123 , 11-42 (1986). · Zbl 0598.14015
[12] J. Kollár: Higher direct images of dualizing sheaves II. Ann. of Math., 124 , 171-202 (1986). · Zbl 0605.14014
[13] J. Kollár, S. Mori: Birational geometry of algebraic varieties. Cambridge Tracts in Math., 134 (1998).
[14] N. Nakayama: On Weierstrass model, in Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata . Kinokuniya, pp. 405-431 (1987).
[15] N. Nakayama: The singularity of the canonical model of compact Kähler manifolds. Math. Ann., 280 , 509-512 (1988). · Zbl 0625.14004
[16] N. Nakayama: Zariski-decomposition and abundance. RIMS- 1142 , (1997) (preprint). · Zbl 1312.14031
[17] V. V. Shokurov: 3-fold log flips. Izv. Ross. Akad. Nauk Ser. Mat., 56 , 105-203 (1992); Russian Acad. Sci. Izv. Math., 40 , 95-202 (1993) (translated in Engrish).
[18] E. Szabó: Divisorial log terminal singularities. J. Math. Sci. Univ. Tokyo, 1 , 631-639 (1995). · Zbl 0835.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.