Colliander, James E.; Keel, Markus; Staffilani, Gigliola; Takaoka, Hideo; Tao, Terence C. Global well-posedness for KdV in Sobolev spaces of negative index. (English) Zbl 0967.35119 Electron. J. Differ. Equ. 2001, Paper No. 26, 7 p. (2001). Summary: The initial value problem for the Korteweg-de Vries equation on the line \[ \partial_t u+\partial^3_x u+\textstyle{{1\over 2}} \partial_x(u^2)= 0,\quad x\in\mathbb{R}, \]\[ u(0)= \phi \] is shown to be globally well-posed for rough data \(\phi\). In particular, we show global well-posedness for initial data in \(H^s(\mathbb{R})\) for \(-3/10< s\). Cited in 1 ReviewCited in 35 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 42B35 Function spaces arising in harmonic analysis 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) Keywords:rough initial data; initial value problem; Korteweg-de Vries equation; global well-posedness PDF BibTeX XML Cite \textit{J. E. Colliander} et al., Electron. J. Differ. Equ. 2001, Paper No. 26, 7 p. (2001; Zbl 0967.35119) Full Text: arXiv EuDML EMIS