×

Global well-posedness for KdV in Sobolev spaces of negative index. (English) Zbl 0967.35119

Summary: The initial value problem for the Korteweg-de Vries equation on the line \[ \partial_t u+\partial^3_x u+\textstyle{{1\over 2}} \partial_x(u^2)= 0,\quad x\in\mathbb{R}, \]
\[ u(0)= \phi \] is shown to be globally well-posed for rough data \(\phi\). In particular, we show global well-posedness for initial data in \(H^s(\mathbb{R})\) for \(-3/10< s\).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
42B35 Function spaces arising in harmonic analysis
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDF BibTeX XML Cite
Full Text: arXiv EuDML EMIS