×

Minimum \(G_2\)-aberration for nonregular fractional factorial designs. (English) Zbl 0967.62055

Summary: We [Stat. Sin. 9, No. 4, 1071-1082 (1999; Zbl 0942.62084)] proposed generalized resolution and minimum aberration criteria for comparing and assessing nonregular fractional factorials, of which Plackett-Burman designs are special cases. A relaxed variant of generalized aberration is proposed and studied in this paper. We show that a best design according to this criterion minimizes the contamination of nonnegligible interactions on the estimation of main effects in the order of importance given by the hierarchical assumption. The new criterion is defined through a set of \(B\) values, a generalization of word length pattern. We derive some theoretical results that relate the \(B\) values of a nonregular fractional factorial and those of its complementary design.
Application of this theory to the construction of the best designs according to the new aberration criterion is discussed. The results in this paper generalize those of B. Tang and C.F.J. Wu [Ann. Stat. 24, No. 6, 2549-2559 (1996; Zbl 0867.62068)] which characterize a minimum aberration (regular) \(2^{m-k}\) design through its complementary design.

MSC:

62K15 Factorial statistical designs
62K05 Optimal statistical designs
Full Text: DOI

References:

[1] Box, G. E. P. and Hunter, J. S. (1961). The 2k-p fractional factorial designs. Technometrics 3 311-351; 449-458. · Zbl 0100.14406
[2] Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Experimenters. Wiley, New York. · Zbl 0394.62003
[3] Box, G. E. P. and Tyssedal, J. (1996). Projective properties ofcertain orthogonal arrays. Biometrika 84 950-955. JSTOR: · Zbl 0883.62087 · doi:10.1093/biomet/83.4.950
[4] Chen, H. and Hedayat, A. S. (1996). 2n-m fractional factorial designs with (weak) minimum aberration. Ann. Statist. 24 2536-2548. · Zbl 0867.62066 · doi:10.1214/aos/1032181167
[5] Chen, J. (1992). Some results on 2n-k fractional factorial designs and search for minimum aberration designs. Ann. Statist. 20 2124-2141. · Zbl 0770.62063 · doi:10.1214/aos/1176348907
[6] Chen, J. and Wu, C. F. J. (1991). Some results on sn-k fractional factorial designs with minimum aberration or optimal moments. Ann. Statist. 19 1028-1041. · Zbl 0725.62068 · doi:10.1214/aos/1176348135
[7] Cheng, C. S. (1995). Some projection properties oforthogonal arrays. Ann. Statist. 23 1223-1233. · Zbl 0838.62061 · doi:10.1214/aos/1176324706
[8] Cheng, C. S., Steinberg, D. M. and Sun, D. X. (1999). Minimum aberration and model robustness for two level fractional factorial designs. J. Roy. Statist. Soc. Ser. B 61 85-93. JSTOR: · Zbl 0913.62072 · doi:10.1111/1467-9868.00164
[9] Deng, L. Y. and Tang, B. (1998). Design selection and classification for Hadamard matrices using generalized minimum aberration criterion. Unpublished manuscript.
[10] Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statist. Sinica 9 1071-1082. · Zbl 0942.62084
[11] Franklin, M. F. (1984). Constructing tables ofminimum aberration pn-m designs. Technometrics 26 225-232. JSTOR: · doi:10.2307/1267548
[12] Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k-p designs. Technometrics 22 601- 608. JSTOR: · Zbl 0453.62063 · doi:10.2307/1268198
[13] Hall, M., Jr. (1961). Hadamard matrix oforder 16. Jet Propulsion Laboratory Research Summary 1 21-26.
[14] Hall, M., Jr. (1965). Hadamard matrix oforder 20. Jet Propulsion Laboratory Technical Report 1 32-76.
[15] Hamada, M. and Wu, C. F. J. (1992). Analysis ofdesigned experiments with complex aliasing. J. Quality Technology 24 130-137.
[16] Kimura, H. (1989). New Hadamard matrix oforder 24. Graphs Combin. 5 235-242. · Zbl 0694.05019 · doi:10.1007/BF01788676
[17] Lin, D. K. J. (1993). A new class ofsupersaturated designs. Technometrics 35 28-31.
[18] Lin, D. K. J. and Draper, N. R. (1992). Projection properties ofPlackett and Burman designs. Technometrics 34 423-428.
[19] Mukerjee, R. and Wu, C. F. J. (1997). Minimum aberration designs for mixed factorials in terms oftheir complementary sets.
[20] Paley, R. E. A. C. (1933). On orthogonal matrices. J. Math. and Phys. 12 311-320. · Zbl 0007.10004
[21] Plackett, R. L. and Burman, J. P. (1946). The design ofoptimum multi-factorial experiments. Biometrika 33 305-325. JSTOR: · Zbl 0063.06274 · doi:10.1093/biomet/33.4.305
[22] Spence, E. (1995). Classification ofHadamard matrices oforder 24 and 28. Discrete Math. 140 185-243. · Zbl 0827.05014 · doi:10.1016/0012-365X(93)E0169-5
[23] Suen, C-Y., Chen, H. and Wu, C. F. J. (1997). Some identities on qn-m designs with application to minimum aberrations. Ann. Statist. 25 1176-1188. · Zbl 0898.62095 · doi:10.1214/aos/1069362743
[24] Tang, B. and Wu, C. F. J. (1996). Characterization ofminimum aberration 2n-k designs in terms oftheir complementary designs. Ann. Statist. 24 2549-2559. · Zbl 0867.62068 · doi:10.1214/aos/1032181168
[25] Tang, B. and Wu, C. F. J. (1997). A method for constructing supersaturated designs and its E s2 optimality. Canad. J. Statist. 25 191-201. JSTOR: · Zbl 0891.62054 · doi:10.2307/3315731
[26] Vijayan, K. (1976). Hadamard matrices and submatrices. J. Austral. Math. Soc. Ser. 22 A 469- 475. · Zbl 0349.05016 · doi:10.1017/S1446788700016335
[27] Wang, J. C. and Wu, C. F. J. (1995). A hidden projection property ofPlackett-Burman and related designs. Statist. Sinica 5 235-250. · Zbl 0824.62074
[28] Webb, S. R. (1964). Characterization ofnonorthogonal incomplete factorial designs. Appendix B ofARL 65-116, Part I. Areospace Research Laboratories, United States Air Force, Wright-Patterson Air Force Base.
[29] Williamson, J. (1944). Hadamard’s determinant theorem and the sum offour squares. Duke Math. J. 11 65-81. · Zbl 0060.03202 · doi:10.1215/S0012-7094-44-01108-7
[30] Wu, C. F. J. (1993). Construction ofsupersaturated designs through partially aliased interactions. Biometrika 80 661-669. JSTOR: · Zbl 0800.62483 · doi:10.1093/biomet/80.3.661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.