Boundary stabilization of Venttsel problems. (Stabilisation frontière de problèmes de Ventcel.) (French) Zbl 0967.93048

The author gives results on boundary stabilization for elastodynamic systems with Venttsel conditions. In the case of stationary Venttsel conditions, a nonlinear boundary feedback implies an energy decay to zero. The invariance principle of LaSalle is a main tool. For evolutive Venttsel conditions, a suitable boundary feedback leads to arbitrarily large energy decay rates. It is based on a general method developed by V. Komornik [C. R. Acad. Sci., Paris, Sér. I, 321, No. 5, 581-586 (1995; Zbl 0872.93071)]. Finally, by a spectral study, the author proves that the natural feedback does not assure exponential decay for the wave equation with Venttsel conditions.
Reviewer: O.Cârjá (Iaşi)


93C20 Control/observation systems governed by partial differential equations
93D15 Stabilization of systems by feedback
74M05 Control, switches and devices (“smart materials”) in solid mechanics


Zbl 0872.93071
Full Text: DOI EuDML Link


[1] F. Alabau et V. Komornik, Observabilité, controlabilité et stabilisation frontière du système d’élasticité linéaire. C. R. Acad. Sci. Paris Sér. I Math. 324 ( 1997) 519-524. Zbl0878.73012 MR1443987 · Zbl 0878.73012
[2] A. Bendaliet K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 ( 1996) 1664-1693. Zbl0869.35068 MR1417476 · Zbl 0869.35068
[3] R. Bey, A. Heminnaet J.-P. Lohéac, Stabilisation frontière du système de l’élasticité. Nouvelle approche. C. R. Acad. Sci. Paris Sér. I Math. 330 ( 2000) 563-566. Zbl0960.74050 MR1760439 · Zbl 0960.74050
[4] F. Bourquin, J.-S. Briffaut et M. Collet, On the feedback stabilization : Komornik’s method, in Proc. of the 2nd international conference on active control in mechanical engineering. Lyon ( 1997).
[5] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hubert. North Holland, Amsterdam ( 1973). Zbl0252.47055 MR348562 · Zbl 0252.47055
[6] R.F. Curtain et H.J. Zwart, An introduction to infinite dimensional linear systems theory. Springer-Verlag, Paris. Zbl0839.93001 · Zbl 0839.93001
[7] G. Duvautet J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris ( 1972). Zbl0298.73001 MR464857 · Zbl 0298.73001
[8] A. Guesmia, Stabilisation frontière d’un système d’élasticité. C. R. Acad. Sci. Paris Sér. I Math. 324 ( 1997) 1355-1360. Zbl0878.35068 MR1457086 · Zbl 0878.35068
[9] A. Haraux, Semi-groupes linéaires et équations d’évolutions linéaires périodiques, Publications du laboratoire d’Analyse Numérique, 78011. Université Pierre et Marie Curie, Paris ( 1978).
[10] A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris ( 1991). Zbl0726.58001 MR1084372 · Zbl 0726.58001
[11] A. Heminna, Contrôlabilité exacte d’un problème avec conditions de Ventcel évolutives pour le système linéaire de l’élasticité. C. R. Acad. Sci. Paris Sér. I Math. 324 ( 1997) 195-200. Zbl0881.93011 MR1438383 · Zbl 0881.93011
[12] A. Heminna, Stabilisation de problèmes de Ventcel. C. R. Acad. Sci. Paris Sér. I Math. 328 ( 1999) 1171-1174. Zbl0934.93057 MR1701380 · Zbl 0934.93057
[13] M.A. Horn, Implications of sharp trace regularity results on boundary tabilization of the system of linear elasticity. J. Math. Anal. Appl. 223 ( 1998) 126-150. Zbl0913.93062 MR1627344 · Zbl 0913.93062
[14] T.J.R. Hughes et J.E. Marsden, Mathematical foundations of elasticity. Prentice - Hall Inc., Englewood Cliffs, New Jersey 07632. Zbl0545.73031 · Zbl 0545.73031
[15] L. Hörmander, Linear partial differential operators. Springer-Verlag, Baud ( 1969). Zbl0175.39201 MR404822 · Zbl 0175.39201
[16] V. Komornik, Exact controllability and stabilization ; The multiplier method. Masson-John Wiley, Paris ( 1994). Zbl0937.93003 MR1359765 · Zbl 0937.93003
[17] V. Komornik, Stabilisation rapide de problèmes d’évolution linéaires. C. R. Acad. Sci. Paris Sér. I Math. 321 ( 1995) 581-586. Zbl0872.93071 MR1356557 · Zbl 0872.93071
[18] J.E. Lagnese, Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim. 21 ( 1983) 968-984. Zbl0531.93044 MR719524 · Zbl 0531.93044
[19] J.E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary. Nonlinear Anal. 16 ( 1991) 35-54. Zbl0726.73014 MR1086824 · Zbl 0726.73014
[20] I. Lasiecka et R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with L2(0, \infty ; L2(\Gamma ))- feedback control in the Dirichlet boundary conditions. J. Differential Equations 66 ( 1987) 340-390. Zbl0629.93047 MR876804 · Zbl 0629.93047
[21] J.P. LaSalle, Some extensions of Liapounov’s second method ( 1960). · Zbl 0094.28602
[22] K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier. C. R. Acad. Sci. Paris Sér. I Math. 15 ( 1985) 531-534. Zbl0601.35024 MR792383 · Zbl 0601.35024
[23] K. Lemrabet, Étude de divers problèmes aux limites de Ventcel d’origine physique ou mécanique dans des domaines non réguliers. Thèse, USTHB, Alger ( 1987).
[24] K. Lemrabet, Problème de Ventcel pour le système de l’élasticité dans un domaine de \Bbb R3. C. R. Acad. Sci. Paris Sér. I Math. 304 ( 1987) 151-154. Zbl0624.73066 MR880120 · Zbl 0624.73066
[25] J.L. Lions, Contrôlabilité exacte, perturbation et stabilisation de systèmes distribués. Masson ( 1986). Zbl0653.93002 MR953547 · Zbl 0653.93002
[26] J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et leurs applications. Dunod, Paris ( 1968). · Zbl 0165.10801
[27] A. Samarsky et V. Andreev, Méthodes aux différences pour équations elliptiques. Éditions de Moscou ( 1978). Zbl0377.35004 MR502018 · Zbl 0377.35004
[28] E. Sanchez-Palencia et D. Leguillon, Computations of singular problems and elasticity. R.M.A. Masson, Paris ( 1987). Zbl0647.73010 MR901985 · Zbl 0647.73010
[29] R. Valid, La mécanique des milieux continus et le calcul des structures. Eyrolles, Paris ( 1977). Zbl0454.73003 · Zbl 0454.73003
[30] A.D Wentzell (Ventcel’), On boundary conditions for multidimensional diffusion processes. Theor. Probab. Appl. 4 ( 1959) 164-177. Zbl0089.13404 MR121855 · Zbl 0089.13404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.