zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic hybrid control. (English) Zbl 0967.93097
The authors consider a complicated version of controlled stochastic systems. The time $t$ is measured continuously. The state of the system is represented by a continuous variable $x$ and a discrete variable $n$. Also, the control has two parts, a continuous type control $v$ that is a measurable stochastic process and a discrete-type (or impulse) control $k$ that is a sequence of random variables. The key point is the set-interface $D$ of which only the boundary is really used. Minimal and maximal set-interfaces are considered. When the state reaches the minimal set, a mandatory impulse (jump or switch) takes place, while if the state belongs to a maximal set, an optional impulse (jump or switch) may be applied, upon decision of the controller. Switching and jumps can be autonomous or totally controlled. A discounted marginal cost of the form $f(x(t),n(t),v(t))\exp(-\int_{0}^{t}c(x(s),n(s),v(s)) ds)$ is introduced and a control problem consists in its minimization. The authors demonstrate that the dynamic programming approach leads to some involved quasi-variational inequality. If the system is non-degenerate then the classic treatment can be used for the solution of the control problem, otherwise, a way is to use the so-called viscosity solutions that are described in the last part of the paper.

93E20Optimal stochastic control (systems)
93B12Variable structure systems
49L25Viscosity solutions (infinite-dimensional problems)
Full Text: DOI
[1] Antsaklis, P.; Stiver, J. A.; Lemmon, M. D.: Hybrid system modeling and autonomous control systems. Lecture notes in computer science, 366-392 (1993)
[2] Aubin, J. P.: Impulse and hybrid control systems: A viability approach. (April 1999)
[3] Back, A.; Guckenheimer, J.; Myers, M.: A dynamical simulation facility for hybrid systems. Lecture notes in computer science, 255-267 (1993)
[4] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect. (1989) · Zbl 0671.34052
[5] Bellman, R. E.: Dynamic programming. (1957) · Zbl 0077.13605
[6] Bensoussan, A.: Stochastic control by functional analysis methods. (1982) · Zbl 0474.93002
[7] Bensoussan, A.; Lions, J. L.: Impulse control and quasi-variational inequalities. (1984) · Zbl 0324.49005
[8] Bensoussan, A.; Menaldi, J. L.: Hybrid control and dynamic programming. Dynam. continuous discrete impulsive syst. 3, 395-442 (1997) · Zbl 0897.49022
[9] Benveniste, A.; Le Guernic, P.: Hybrid dynamical systems theory and signal language. IEEE trans. Automat. control 35, 535-546 (1990) · Zbl 0709.68012
[10] Blankenship, G. L.; Menaldi, J. L.: Optimal stochastic scheduling of power generation systems with scheduling delays and large cost differentials. SIAM J. Control optim. 22, 121-132 (1984) · Zbl 0551.93076
[11] M. S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control, Thesis LIDS-TH-2304, MIT, Cambridge, MA, 1995. · Zbl 0874.68207
[12] Branicky, M. S.; Borkar, V. S.; Mitter, S. K.: A unified framework for hybrid control: model and optimal control theory. IEEE trans. Automat. control 43, 31-45 (1998) · Zbl 0951.93002
[13] Brockett, R.: Hybrid models for motion control systems. Essays in control: perspectives in the theory and its application, 29-53 (1993)
[14] Costa, O. L. V.; Davis, M. H. A.: Impulse control of piecewise deterministic processes. Math. control signals syst. 2, 187-206 (1989) · Zbl 0675.93077
[15] Crandall, M. G.; Ishii, H.; Lions, P. L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. amer. Math. soc. 27, 1-67 (1992) · Zbl 0755.35015
[16] Davis, M. H. A.: Markov models and optimization. (1993) · Zbl 0780.60002
[17] Ezzine, J.; Haddad, A. H.: Controllability and observability of hybrid systems. Internat. J. Control 49, 2045-2055 (1989) · Zbl 0683.93011
[18] Fleming, W. H.; Soner, H. M.: Controlled Markov processes and viscosity solutions. (1992) · Zbl 0773.60070
[19] Hsu, C. S.: Cell-to-cell mapping. (1997) · Zbl 0875.93143
[20] Lions, P. L.: Generalized solutions of Hamilton--Jacobi equations. (1982) · Zbl 0497.35001
[21] Mariton, M.: Jump linear systems in automatic control. (1990)
[22] Menaldi, J. L.: On the optimal impulse control problem for degenerate diffusions. SIAM J. Control optim. 18, 722-739 (1980) · Zbl 0462.93046
[23] Menaldi, J. L.: Optimal impulse control problems for degenerate diffusions with jumps. Acta appl. Math. 8, 165-198 (1987) · Zbl 0616.93079
[24] Nerode, A.; Kohn, W.: Models for hybrid systems: automata, topologies, sability. Lecture notes in computer science, 317-356 (1993)
[25] Pontryagin, L. S.; Boltyanskii, V. C.; Gamkriledze, R. V.; Mischenko, E. F.: The mathematical theory of optimal processes. (1962)
[26] M. Robin, Contröle impulsionnel des processus de Markov, Thesis TE-035, INRIA, Paris, France, 1977. · Zbl 0355.93039
[27] Tavernini, L.: Differential automata and their discrete simulators. Nonlinear anal. 11, 665-683 (1987) · Zbl 0666.34005
[28] Utkin, V. I.: Variable structure systems with sliding modes. IEEE trans. Automat. control 22, 212-222 (1977) · Zbl 0382.93036
[29] Varaiya, P. P.: Smart cars on smart mode: problem of control. IEEE trans. Automat. control 38, 195-207 (1993)
[30] Witsenhausen, H.: A class of hybrid-state continuous-time dynamic systems. IEEE trans. Automat. control 12, 161-167 (1966)