Mathematical methods for curves and surfaces. 5th international conference, Oslo, Norway, June 29 – July 4, 2000. (English) Zbl 0968.00046

Innovations in Applied Mathematics. Nashville, TN: Vanderbilt University Press. xviii, 554 p. (2001).

Show indexed articles as search result.

The articles of this volume will be reviewed individually. The 2nd conference 1997 has been reviewed (see Zbl 0892.00046).
Indexed articles:
Ahn, Sung Joon; Rauh, Wolfgang; Warnecke, Hans-Jürgen, Best-fit of implicit surfaces and plane curves, 1-14 [Zbl 0989.65017]
Albrecht, Gudrun, Determination of geometrical invariants of rationally parametrized conic sections, 15-24 [Zbl 0989.65034]
Allasia, G.; Besenghi, R.; De Rossi, A., A scattered data approximation scheme for the detection of fault lines, 25-34 [Zbl 0990.65028]
Barsky, Brian A.; Goldman, Ronald N., Beta-continuity revisited: Determining Bézier control vertices to construct geometrically continuous curves and surfaces, 35-44 [Zbl 0990.65019]
Bremer, Peer-Timo; Hamann, Bernd; Kreylos, Oliver; Wolter, Franz-Erich, Simplification of closed triangulated surfaces using simulated annealing, 45-54 [Zbl 0989.65035]
Carnicer, J. M.; Gasca, M., Planar configurations with simple Lagrange interpolation formulae, 55-62 [Zbl 1003.65008]
Crampton, A.; Mason, J. C.; Turner, D. A., Approximating semi-structured data with different errors using support vector machine regression, 63-72 [Zbl 0989.65018]
DeRose, Tony D., Subdivision surfaces in feature films, 73-79 [Zbl 0989.65036]
Dokken, Tor, Approximate implicitization, 81-102 [Zbl 0989.65019]
Dokken, Tor; Kellermann, Hermann K.; Tegnander, Cathrine, An approach to weak approximate implicitization, 103-112 [Zbl 0989.65020]
Dubuc, Serge; Merrien, Jean-Louis, A 4-point Hermite subdivision scheme, 113-122 [Zbl 0989.65006]
Dyn, Nira; Floater, Michael S.; Iske, Armin, Univariate adaptive thinning, 123-134 [Zbl 0989.65007]
Dyn, Nira; Hormann, Kai; Kim, Sun-Jeong; Levin, David, Optimizing 3D triangulations using discrete curvature analysis, 135-146 [Zbl 0989.65037]
Goodman, Tim N. T., Refinable spline functions and Hermite interpolation, 147-161 [Zbl 0989.65154]
Goshtasby, A. Ardeshir, Approximating digital shapes by parametric surfaces, 163-172 [Zbl 0989.65021]
Hagen, Hans; Scheuermann, Gerik, Clifford algebra and flows, 173-182 [Zbl 1002.65025]
Ho, Chih-Cheng; Cohen, Elaine, Surface self-intersection, 183-194 [Zbl 0989.65038]
Höllig, Klaus; Reif, Ulrich; Wipper, Joachim, Error estimates for the web-spline method, 195-209 [Zbl 0989.65126]
Iske, Armin, Hierarchical scattered data filtering for multilevel interpolation schemes, 211-221 [Zbl 0989.65008]
Jüttler, Bert, Bounding the Hausdorff distance between implicitly defined and/or parametric curves, 223-232 [Zbl 0990.65029]
Karčiauskas, Kȩstutis, Biangle surface patches, 233-242 [Zbl 0989.65022]
Lee, Byung-Gook; Lyche, Tom; Mørken, Knut, Some examples of quasi-interpolants constructed from local spline projectors, 243-252 [Zbl 0989.65009]
Lopes, Hélio; Pesco, Sinésio, Single-valued tubular surface intersection using interval arithmetic, 253-262 [Zbl 0989.65039]
Lu, Zhaoying; Willis, Claire; Paddon, Derek, Surface animation for flower growth, 263-272 [Zbl 0989.65023]
Ma, Marryat; Mann, Stephen, Multiresolution editing of pasted surfaces, 273-282 [Zbl 0989.65024]
Mainar, Esmeralda; Peña, Juan Manuel, Knot insertion algorithms and local linear independence, 283-292 [Zbl 0990.65013]
Manni, Carla, Local tension methods for bivariate scattered data interpolation, 293-314 [Zbl 0989.65010]
Morandi, Rossana; Sestini, Alessandra, Data reduction in surface approximation, 315-324 [Zbl 0989.65025]
Morin, Géraldine; Goldman, Ron, The analytic blossom, 325-346 [Zbl 0989.65026]
Neagu, Manuela; Calcoen, Emmanuelle; Lacolle, Bernard, Bézier curves: Topological convergence of the control polygon, 347-354 [Zbl 1002.65026]
Neamtu, Marian, What is the natural generalization of univariate splines to higher dimensions?, 355-392 [Zbl 0988.41004]
Nürnberger, Günther; Schumaker, Larry L.; Zeilfelder, Frank, Local Lagrange interpolation by bivariate \(C^1\) cubic splines, 393-403 [Zbl 0989.65011]
Oja, Peeter, Stability of collocation by smooth splines for Volterra integral equations, 405-412 [Zbl 0989.65149]
Peternell, Martin, \(G^1\)-Hermite interpolation of ruled surfaces, 413-422 [Zbl 0989.65012]
Rössl, Ch.; Kobbelt, L.; Seidel, H.-P., Recovering structural information from triangulated surfaces, 423-432 [Zbl 0989.65027]
Scherer, Karl, Lower bounds for Bernstein-Bézier condition number, 433-443 [Zbl 0992.41010]
Schneider, Robert; Kobbelt, Leif; Seidel, Hans-Peter, Improved bi-Laplacian mesh fairing, 445-454 [Zbl 1002.65027]
Schwanecke, U.; Kobbelt, L., Approximate envelope reconstruction for moving solids, 455-466 [Zbl 0989.65040]
Sederberg, Thomas W.; Zheng, Jianmin, Towards the \(\mu\)-basis of a rational surface, 467-476 [Zbl 0989.65028]
Suter, Erich, A strategy for the construction of piecewise linear prewavelets over type-1 triangulations in any space dimension, 477-486 [Zbl 1002.65154]
Taleb, Salim, A mixed representation approach to offsets of rational curves, 487-496 [Zbl 0989.65029]
Ueda, Kenji, Pedal curves and surfaces, 497-506 [Zbl 0989.65030]
Velho, Luiz, Generalizing the \(C^4\) four-directional box spline to surfaces of arbitrary topology, 507-516 [Zbl 0989.65031]
Wendland, Holger, Moving least squares approximation on the sphere, 517-526 [Zbl 0989.65043]
Windmolders, Joris; Dierckx, Paul, NURPS for special effects and quadrics, 527-534 [Zbl 0989.65032]
Winkler, Joab R., Computational experiments with resultants for scaled Bernstein polynomials, 535-544 [Zbl 0989.65041]
Xie, Zhiyong; Farin, Gerald E., Deformation with hierarchical B-splines, 545-554 [Zbl 0989.65042]


00B25 Proceedings of conferences of miscellaneous specific interest
65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis


Zbl 0892.00046