Messaoudi, Ali Frontière du fractal de Rauzy et système de numération complexe. (Boundary of the Rauzy fractal and complex numeration system). (French) Zbl 0968.28005 Acta Arith. 95, No. 3, 195-224 (2000). Consider the polynomial \(P(x) = x^3 - x^2-x -1\) and denote its real root by \(\beta\) and the two complex roots by \(\alpha\) and \(\overline{\alpha}\), respectively. Then \(\beta > 1\) and the modules of \(\alpha\) and \(\overline{\alpha}\) are strictly less than 1. The Rauzy fractal is the set on the complex plane defined by \[ {\mathcal E} = \left\{ \sum_{i=3}^{\infty} \varepsilon_i \alpha^i \mid \forall i \geq 3, \varepsilon_i \in \{0, 1\},\;\varepsilon_i \varepsilon_{i+1} \varepsilon_{i+2} = 0 \right\}. \] In this paper, the author gives a parametrization for the boundary of the Rauzy fractal \({\mathcal E}\) which makes it possible for him to calculate the Hausdorff dimension of the boundary of \({\mathcal E}\), and to prove that the boundary is a quasi-circle. The author also studies the strictly extreme points and the convex hull of the Rauzy fractal. Reviewer: Yimin Xiao (East Lansing) Cited in 1 ReviewCited in 26 Documents MSC: 28A80 Fractals 11B39 Fibonacci and Lucas numbers and polynomials and generalizations 11B85 Automata sequences 11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc. 28A78 Hausdorff and packing measures 37B10 Symbolic dynamics Keywords:Rauzy fractal; quasi-circle; Hausdorff dimension; strictly extreme points; convex hull; symbolic dynamics × Cite Format Result Cite Review PDF Full Text: DOI EuDML