## Weierstrass and approximation theory.(English)Zbl 0968.41001

This is a lovely article on Weierstrass and the early development of approximation theory. It begins with a short biography of Weierstrass. Two main themes stand out in his work: To set a new standard of rigor in analysis, and his love for power series or more generally for function series. The first theme is documented by his construction of a continuous, nowhere differentiable function which was shocking to the mathematical community at the time. Weierstrass presented this in his lectures since 1861 but published his example (using a cosine series) in 1872. Further history on that by Bolzano, Riemann, Takagi, and du Bois-Reymond is mentioned. The second theme is documented by the Fundamental Theorem of Approximation Theory: Algebraic polynomials are dense in $$C[a,b]$$, where $$-\infty <a<\sigma <\infty$$. This was published by Weierstrass. in 1885 when he was 70 years old, and proved by representing $$f\in C[a,b]$$ as a limit of integrals $$\int^\infty_{-\infty}$$ depending on a parameter $$k$$. Thus $$f$$ is the uniform limit of a sequence of entire functions and hence of a sequence of polynomials. Weierstrass. states and proves also the analogous theorem about the density of trigonometric polynomials.
The author then lists and analyses further proofs (before 1913) of the Fundamental Theorem. He puts them into three groups. In Group 1 there are proofs based on singular integrals (Weierstrass, Picard, Fejér, Landau), while those in Group 2 are based on the approximation of a particular function, like a polygonal function (Runge, Lebesgue, Mittag-Leffler, Lerch). Left over are those in Group 3 by Bernstein, Volterra, Lerch.
It is interesting to note that Runge proved (also in 1885!) that rational functions are dense in $$C[a,b]$$ but overlooked the fact that this is true already for polynomials. Lebesgue reduces the Fundamental Theorem to the special case $$f(x)= |x|$$, and he raises (1908) apparently for the first time questions about the speed of approximation, three years before Jackson’s dissertation appeared.
The last section deals with various generalizations: Müntz’s theorem, Hermite-Fejér interpolation, Carleman’s theorem, Stone-Weierstrass, and Bohman-Korovkin. All these theorems are given with full explanation, proofs, as well as historical notes. It is clear that this article is necessary reading for all approximators.

### MSC:

 41-02 Research exposition (monographs, survey articles) pertaining to approximations and expansions

### Keywords:

approximation theory
Full Text:

### References:

 [1] Achieser, N. I., Theory of Approximation (1956), Ungar: Ungar New York · Zbl 0072.28403 [2] Baillaud, B.; Bourget, H., Correspondance d’Hermite et de Stieltjes (1905), Gauthier-Villars: Gauthier-Villars Paris [3] Banach, S., Über die Baire’sche Kategorie gewisser Funktionenmengen, Stud. Math., 3, 174-179 (1931) · JFM 57.0305.05 [4] Bell, E. T., Men of Mathematics (1936), Scientific: Scientific London · Zbl 0052.24702 [5] Bernstein, S. N., Sur les recherches récentes relatives à la meilleure approximation des fonctions continues par les polynomes, Proc. of 5th Inter. Math. Congress, 1, 256-266 (1912) · JFM 45.0633.03 [6] Bernstein, S. N., Sur l’ordre de la meilleure approximation des fonctions continues par les polynomes de degré donné, Mém. Cl. Sci. Acad. Roy. Belg., 4, 1-103 (1912) · JFM 45.0633.03 [7] Bernstein, S. N., Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkow, 13, 1-2 (1912/13) · JFM 43.0301.03 [8] Biermann, K. R., Karl Weierstrass, (Gillispie, C. C., Dictionary of Scientific Biography (1976), Scribner’s: Scribner’s New York) · Zbl 0196.28805 [9] Bohman, H., On approximation of continuous and of analytic functions, Ark. Mat., 2, 43-56 (1952) · Zbl 0048.29901 [10] du Bois-Reymond, P., Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen, J. Reine Angew. Math., 79, 21-37 (1875) · JFM 06.0241.01 [11] du Bois-Reymond, P., Untersuchungen über die Convergenz und Divergenz der Fourierschen Darstellungsformeln, Abh. Math.-Phys. Classe K. Bayerische Akad. Wissenschaften, 12, 1-13 (1876) · JFM 09.0298.01 [12] Bolzano, B., Paradoxes of the Infinite (1950), Routledge and Kegan Paul: Routledge and Kegan Paul London · Zbl 0039.00506 [13] Borel, É., Lecons sur les Fonctions de Variables Réelles et les Développements en Séries de Polynomes (1905), Gauthier-Villars: Gauthier-Villars Paris · JFM 36.0435.01 [14] Borwein, P.; Erdélyi, T., Polynomials and Polynomial Inequalities (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0840.26002 [15] Bourbaki, N., Topologie Générale (Livre III). Espaces Fonctionnels Dictionnaire (Chapitre X) (1949), Hermann & Cie: Hermann & Cie Paris · Zbl 0036.38601 [16] Boyer, C. B.; Merzbach, U. C., A History of Mathematics (1989), Wiley: Wiley New York · Zbl 0698.01001 [17] Brosowski, B.; Deutsch, F., An elementary proof of the Stone-Weierstrass theorem, Proc. Amer. Math. Soc., 81, 89-92 (1981) · Zbl 0482.46014 [18] Buck, R. C., Studies in Modern Analysis (1962), Mathematical Association of America: Mathematical Association of America Washington, D.C · Zbl 0128.24104 [19] Burckel, R. B.; Saeki, S., An elementary proof of the Müntz-Szász theorem, Expo. Math., 4, 335-341 (1983) · Zbl 0525.41036 [20] Butzer, P. L.; Nessel, R. J., Aspects of de la Vallée Poussin’s work in approximation and its influence, Arch. Hist. Exact Sci., 46, 67-95 (1993) · Zbl 0782.01013 [21] Butzer, P. L.; Stark, E. L., The singular integral of Landau alias the Landau polynomials—Placement and impact of Landau’s article “Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion”, (Bateman, P. T.; Mirsky, L.; Montgomery, H. L.; Schall, W.; Schoenberg, I. J.; Schwarz, W.; Wefelscheid, H., Edmund Landau, Collected Works (1986), Thales-Verlag: Thales-Verlag Essen), 83-111 [22] Butzer, P. L.; Stark, E. L., “Riemann”s Example” of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym, Bull. Soc. Math. Belgique, 38, 45-73 (1986) · Zbl 0629.01013 [23] Cakon, R., Alternative Proofs of Weierstrass Theorem of Approximation: An Expository Paper (1987), The Pennsylvania State UniversityDepartment of Mathematics [24] Carleman, T., Sur un théorème de Weierstrass, Ark. Mat., Ast. Fysik B, 20, 1-5 (1927) · JFM 53.0237.02 [25] Cheney, E. W., Introduction to Approximation Theory (1966), McGraw-Hill: McGraw-Hill New York · Zbl 0161.25202 [26] Dieudonné, J., Foundations of Modern Analysis (1969), Academic Press: Academic Press New York · Zbl 0176.00502 [27] Faber, G., Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deut. Math. Verein, 23, 190-210 (1914) · JFM 45.0381.04 [28] Feinerman, R. P.; Newman, D. J., Polynomial Approximation (1974), Williams and Wilkins: Williams and Wilkins Baltimore · Zbl 0309.41006 [29] Fejér, L., Sur les fonctions bornées et intégrables, C.R. Heb. Séances Acad. Sci. Paris, 131, 984-987 (1900) · JFM 31.0400.01 [30] Fejér, L., Ueber Interpolation, Nachr. Gesell. Wiss. Göttingen Math. Phys. Kl., 66-91 (1916) · JFM 46.0419.01 [31] Fejér, L., Über Weierstrasssche Approximation, besonders durch Hermitesche Interpolation, Math. Ann., 102, 707-725 (1930) · JFM 56.0255.02 [32] Frih, E. M.; Gauthier, P. M., Approximation of a function and its derivatives by entire functions of several variables, Canad. Math. Bull., 31, 495-499 (1988) · Zbl 0641.32011 [33] Gaier, D., Lectures on Complex Approximation (1987), Birkhäuser: Birkhäuser Boston · Zbl 0612.30003 [34] Gerver, J., The differentiability of the Riemann function at certain rational multiples of $$π$$, Amer. J. Math., 92, 33-55 (1970) · Zbl 0203.05904 [35] Gerver, J., More on the differentiability of the Riemann function, Amer. J. Math., 93, 33-41 (1970) · Zbl 0203.05904 [36] Grabiner, J. V., The Origins of Cauchy’s Rigorous Calculus (1981), MIT Press: MIT Press Cambridge · Zbl 0517.01002 [37] Gray, J. D., The shaping of the Riesz representation theorem: A chapter in the history of analysis, Arch. Hist. Exact Sci., 31, 127-187 (1984) · Zbl 0549.01010 [38] Hardy, G. H., Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc., 17, 301-325 (1916) · JFM 46.0401.03 [39] Hildebrandt, T. H., A simple continuous function with a finite derivative at no point, Amer. Math. Monthly, 40, 547-548 (1933) · JFM 59.0285.03 [40] Hille, E., Analytic Function Theory (1962), Ginn and Co: Ginn and Co Boston · Zbl 0102.29401 [41] Hunt, B. R., The Hausdorff dimension of graphs of Weierstrass functions, Trans. Amer. Math. Soc., 126, 791-800 (1998) · Zbl 0897.28004 [42] Jackson, D., Über die Genauigkeit der Annäherung stetiger Funktionen durch ganz rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung (1911), Univ. Göttingen · JFM 42.0434.03 [43] Jackson, D., The general theory of approximation by polynomials and trigonometric sums, Bull. Amer. Math. Soc., 27, 415-431 (1921) · JFM 48.0289.01 [44] Jackson, D., The Theory of Approximation. The Theory of Approximation, Amer. Math. Soc., Colloquium Publ., XI (1930) · JFM 56.0936.01 [45] Jackson, D., A proof of Weierstrass’s theorem, Amer. Math. Monthly, 41, 309-312 (1934) · JFM 60.0211.01 [46] Kaplan, W., Approximation by entire functions, Michigan Math. J., 3, 43-52 (1955/56) · Zbl 0070.06203 [47] Korovkin, P. P., On convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 90, 961-964 (1953) · Zbl 0050.34005 [48] Korovkin, P. P., Linear Operators and Approximation Theory (1960), Hindustan: Hindustan Delhi · Zbl 0094.10201 [49] Kowalewski, G., Über Bolzanos nichtdifferenzierbare stetige Funktion, Acta Math., 44, 315-319 (1923) · JFM 49.0174.01 [50] Kuhn, H., Ein elementarer Beweis des Weierstrassschen Approximationssatzes, Arch. Math., 15, 316-317 (1964) · Zbl 0127.29103 [51] Kuratowski, C., Topologie (1958), Panstwowe Wydawnictwo Naukowe: Panstwowe Wydawnictwo Naukowe Warszawa · Zbl 0078.14603 [52] Landau, E., Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion, Rend. Circ. Mat. Palermo, 25, 337-345 (1908) · JFM 39.0472.02 [53] Lebesgue, H., Sur l’approximation des fonctions, Bull. Sci. Math., 22, 278 (1898) · JFM 29.0352.02 [54] Lebesgue, H., Sur la représentation approchée des fonctions, Rend. Circ. Mat. Palermo, 26, 325-328 (1908) · JFM 39.0473.01 [55] Lebesgue, H., Sur les intégrales singulières, Ann. Fac. Sci. Univ. Toulouse, 1, 25-117 (1909) · JFM 41.0327.02 [56] Lerch, M., About the main theorem of the theory of generating functions (in Czech), Rozpravy Ceske Akad., 33, 681-685 (1892) [57] Lerch, M., Sur un point de la théorie des fonctions génératrices d’Abel, Acta Math., 27, 339-351 (1903) · JFM 34.0424.03 [58] Levasseur, K. M., A probabilistic proof of the Weierstrass approximation theorem, Amer. Math. Monthly, 91, 249-250 (1984) · Zbl 0564.41005 [59] Luxemburg, W. A.J.; Korevaar, J., Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc., 157, 23-37 (1971) · Zbl 0224.30049 [60] MacTutor, Available at, http://www-groups.dcs.st-and.ac.uk/history; MacTutor, Available at, http://www-groups.dcs.st-and.ac.uk/history [61] Mazurkiewicz, S., Sur les fonctions non dérivables, Stud. Math., 1, 92-94 (1929) · Zbl 0003.29702 [62] Méray, C., Nouveaux exemples d’interpolations illusoires, Bull. Sci. Math., 20, 266-270 (1986) · JFM 27.0204.02 [63] Meyer, Y., Wavelets: Algorithms and Applications (1993), SIAM: SIAM Philadelphia · Zbl 0821.42018 [64] Mittag-Leffler, G., Sur la représentation analytique des functions d’une variable réelle, Rend. Circ. Mat. Palermo, 14, 217-224 (1900) · JFM 31.0409.01 [65] Müntz, C. H., Über den Approximationssatz von Weierstrass, H. A. Schwarz’s Festschrift (1914), p. 303-312 · JFM 45.0633.02 [66] Nachbin, L., Elements of Approximation Theory (1976), Krieger: Krieger Huntington · Zbl 0128.34202 [67] Narasimhan, R., Analysis on Real and Complex Manifolds (1968), North-Holland: North-Holland Amsterdam · Zbl 0188.25803 [68] Natanson, I. P., Constructive Function Theory (1964), Frederick Ungar: Frederick Ungar New York · Zbl 0133.31101 [69] Neuenschwander, E., Riemann’s example of a continuous ‘nondifferentiable’ function, Math. Intelligencer, 1, 40-44 (1978) · Zbl 0374.26002 [70] Ostrowski, A., Vorlesungen über Differential-und Integralrechnung (1951), Birkhäuser: Birkhäuser Basel · Zbl 0044.27501 [71] Oxtoby, J. C., Measure and Category. Measure and Category, GTM 2 (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0217.09201 [72] Picard, E., Sur la représentation approchée des fonctions, C. R. Heb. Séances Acad. Sci. Paris, 112, 183-186 (1891) · JFM 23.0412.01 [73] Picard, E., Traité D’Analyse (1891), Gauthier-Villars: Gauthier-Villars Paris [74] Picard, E., Lectures on mathematics, (Story, W. E.; Wilson, L. N., Clark University 1880-1899 Decennial Celebration (1899), Norwood Press: Norwood Press Norwood), 207-259 [75] Prolla, J. B., Weierstrass-Stone, the Theorem (1993), Peter Lang: Peter Lang Frankfurt · Zbl 0849.41029 [76] Ransford, T. J., A short elementary proof of the Bishop-Stone-Weierstrass theorem, Math. Proc. Cambridge Philos. Soc., 96, 309-311 (1984) · Zbl 0537.41018 [77] de Rham, G., Sur un exemple de fonction continue sans dérivée, Enseign. Math., 3, 71-72 (1957) · Zbl 0077.06104 [78] Rivlin, T. J., The Chebyshev Polynomial (1974), Wiley: Wiley New York · Zbl 0299.41005 [79] Rogers, L. C.G., A simple proof of Müntz’s theorem, Math. Proc. Cambridge Philos. Soc., 90, 1-3 (1981) · Zbl 0469.41007 [80] Rudin, W., Real and Complex Analysis (1966), McGraw-Hill: McGraw-Hill New York · Zbl 0148.02904 [81] Runge, C., Zur Theorie der eindeutigen analytischen Functionen, Acta Math., 6, 229-244 (1885) · JFM 17.0379.01 [82] Runge, C., Über die Darstellung willkürlicher Functionen, Acta Math., 7, 387-392 (1885/86) · JFM 18.0344.02 [83] Runge, C., Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten, Zeit. Math. Physik, 46, 224-243 (1901) · JFM 32.0272.02 [84] Schwarz, H. A., Zur Integration der partiellen Differentialgleichung ∂$$^2u$$/∂$$x^2$$+∂$$^2u$$/∂$$y^2=0$$, J. Reine Angew. Math., 74, 218-253 (1871) · JFM 04.0193.02 [85] Skrasek, J., Le centenaire de la naissance de Matyas Lerch, Czech. Math. J., 10, 631-635 (1960) · Zbl 0094.00402 [86] Spivak, M., Calculus (1994), Publish or Perish [87] Stark, E. L., Bernstein-Polynome, 1912-1955, (Butzer, P. L.; Sz.-Nagy, B.; Görlich, E., Functional Analysis and Approximation. Functional Analysis and Approximation, ISNM 60 (1981), Birkhäuser: Birkhäuser Basel), 443-461 · Zbl 0473.41002 [88] Stone, M. H., Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, 375-481 (1937) · Zbl 0017.13502 [89] Stone, M. H., A generalized Weierstrass approximation theorem, Math. Magazine, 21, 167-184 (1948) [90] Stone, M. H., A generalized Weierstrass approximation theorem, (Buck, R. C., Studies in Modern Analysis (1962), Mathematical Association of America: Mathematical Association of America Washington, D.C), 30-87 · Zbl 0147.11702 [91] Szabados, J.; Vértesi, P., Interpolation of Functions (1990), World Scientific: World Scientific Singapore · Zbl 0721.41003 [92] Szász, O., Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann., 77, 482-496 (1916) · JFM 46.0419.03 [93] Sz.-Nagy, B., Introduction to Real Functions and Orthogonal Expansions (1965), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 0128.05101 [94] Takagi, T., A simple example of a continuous function without derivative, Proc. Physico-Math. Soc. Japan, 1, 176-177 (1903) · JFM 34.0410.05 [95] Timan, A. F., Theory of Approximation of Functions of a Real Variable (1963), Pergamon Press: Pergamon Press Oxford · Zbl 0117.29001 [96] Todd, J., Introduction to the Constructive Theory of Functions. Introduction to the Constructive Theory of Functions, CalTech Lecture Notes (1961) [97] Ullrich, P., Anmerkungen zum “Riemannschen Beispiel” ∑$$^∞_{n=1}sinn^2 xn^2$$ einer stetigen, nicht differenzierbaren Funktion, Result. Math., 31, 245-265 (1997) · Zbl 0874.01003 [98] de la Vallée Poussin, Ch. J., Sur l’approximation des fonctions d’une variable réelle et leurs dérivées par des polynomes et des suites limitées de Fourier, Bull. Acad. Royale Belgique, 3, 193-254 (1908) · JFM 39.0329.02 [99] de la Vallée Poussin, Ch. J., Sur la meilleure approximation des fonctions d’une variable réelle par des expressions d’ordre donné, C.R. Acad. Sci. Paris, 166, 799-802 (1918) · JFM 46.0416.02 [100] de la Vallée Poussin, Ch. J., L’approximation des fonctions d’une variable réelle, L’Enseign. Math., 20, 5-29 (1918) · JFM 46.0416.03 [101] de la Vallée Poussin, Ch. J., Leçons sur L’Approximation des Fonctions d’une Variable Réelle (1919), Gauthier-Villars: Gauthier-Villars Paris · JFM 47.0908.02 [102] Volterra, V., Sul principio di Dirichlet, Rend. Circ. Mat. Palermo, 11, 83-86 (1897) · JFM 28.0363.01 [103] van der Waerden, B. L., Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, Math. Z., 32, 474-475 (1930) · JFM 56.0929.02 [104] Walsh, J. L., Interpolation and Approximation by Rational Functions in the Complex Domain (1935), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0013.05903 [105] K. Weierstrass, Über continuierliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen, Königliche Akademie der Wissenschaften, 18 Juli 1872. [Also in “Mathematische Werke,” Vol. 2, pp. 71-74, Mayer & Müller, Berlin, 1895.]; K. Weierstrass, Über continuierliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen, Königliche Akademie der Wissenschaften, 18 Juli 1872. [Also in “Mathematische Werke,” Vol. 2, pp. 71-74, Mayer & Müller, Berlin, 1895.] [106] K. Weierstrass, Zur Functionenlehre, Monatsber. Königl. Akad. Wiss, 1880. [Also in “Mathematische Werke,” Vol. 2, pp. 210-223, Mayer & Müller, Berlin, 1895.]; K. Weierstrass, Zur Functionenlehre, Monatsber. Königl. Akad. Wiss, 1880. [Also in “Mathematische Werke,” Vol. 2, pp. 210-223, Mayer & Müller, Berlin, 1895.] [107] K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsber. Akad. Berlin, 1885, pp. 633-639, 789-805. [This appeared in two parts. An expanded version of this paper with ten additional pages also appeared in “Mathematische Werke,” Vol. 3, 1-37, Mayer & Müller, Berlin, 1903.]; K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsber. Akad. Berlin, 1885, pp. 633-639, 789-805. [This appeared in two parts. An expanded version of this paper with ten additional pages also appeared in “Mathematische Werke,” Vol. 3, 1-37, Mayer & Müller, Berlin, 1903.] [108] Weierstrass, K., Sur la possibilité d’une représentation analytique des fonctions dites arbitraires d’une variable réelle, J. Math. Pure Appl., 2, 105-113 (1886) · JFM 18.0344.01 [109] Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36, 63-89 (1934) · JFM 60.0217.01 [110] Yamaguti, M.; Hata, M.; Kigami, J., Mathematics of Fractals. Mathematics of Fractals, AMS Transl. Math. Monographs (1997), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0888.58030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.