Soucaliuc, Florin; Tóth, Bálint; Werner, Wendelin Reflection and coalescence between independent one-dimensional Brownian paths. (English) Zbl 0968.60072 Ann. Inst. Henri Poincaré, Probab. Stat. 36, No. 4, 509-545 (2000). A particular case of the results is the following: Let \(B\) be the Brownian motion starting at \(0\) in \([0,1]\) and let \(\beta\) be \(B\) running backwards from \(\beta(1)= 0\). Let \(C\) and \(\gamma\) be processes “reflected” (\(B\) in \(\beta\) and \(\beta\) in \(B\)). Then \((C,\beta)\) and \((B,\gamma)\) are identical in law. Reviewer: M.Rao (Gainesville) Cited in 1 ReviewCited in 24 Documents MSC: 60J65 Brownian motion Keywords:Brownian path; coalescing; reflecting PDF BibTeX XML Cite \textit{F. Soucaliuc} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 36, No. 4, 509--545 (2000; Zbl 0968.60072) Full Text: DOI Numdam EuDML OpenURL