Novoselova, S. M. Modes of the tectorial membrane, transversal eigenfunctions, and the origin of the outer hair cell oscillations. (English. Russian original) Zbl 0968.74562 J. Math. Sci., New York 86, No. 3, 2747-2754 (1997); translation from Zap. Nauchn. Semin. POMI 218, 138-148 (1994). Cited in 1 Document MSC: 74L15 Biomechanical solid mechanics 92C10 Biomechanics 74H45 Vibrations in dynamical problems in solid mechanics 74K15 Membranes Keywords:tectorial membrane; mammalian inner ear; system of weakly bent beams; anisotropic plate; cross-sectional eigenfunctions; fundamental eigenfrequency; outer hair cells × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] De Boer, E., Auditory physics. Physical principles in hearing theory. III, Phys. Rep., 203, No. 3, 125-231 (1991) [2] LePage, E. L.; Reuter, G.; Hong, S.; Zenner, H. P.; Duifhuis, H.; Horst, J. W.; van Dijk, P.; van Netten, S. M., Summating baseline shifts and mechanical adaptation in a guinea pig cochlear explant shown with two optical displacement-sensing techniques, Biophysics of Hair Cell Sensory Systems, 240-248 (1993), Singapore: World Scientific, Singapore [3] Allen, J. B.; Fahey, P. F., Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane, J. Acoust. Soc. Am., 92, No. 1, 178-188 (1992) [4] Novoselova, S. M., The possibility of sharp tuning in a linear transversally inhomogeneous cochlear model, Hear. Res., 41, No. 2, 125-136 (1989) [5] Novoselova, S. M.; Duifhuis, H.; Horst, J. W.; van Dijk, P.; van Netten, S. M., An alternative mechanism of sharp cochlear tuning, Mechanics and Biophysics of Hearing, 338-344 (1993), Singapore: World Scientific, Singapore [6] Novoselova, S. M., Transversally inhomogeneous sharply tuned linear cochlear model, Zap. Nauchn. Semin. POMI, 210, 213-240 (1993) · Zbl 0871.92011 [7] Babich, V. M.; Novoselova, S. M.; de Boer, E.; Viergever, M., On vibrations of membranes in the mammalian cochlea, Mechanics of Hearing, 37-44 (1983), Delft: Delft University Press, Delft [8] Kronester-Frei, A., Ultrastructure of different zones of the tectorial membrane, Cell Tiss. Res., 193, 11-23 (1978) · doi:10.1007/BF00221597 [9] Zwislocki, J. J.; Cefaratti, L. K., Tectorial membrane II: stiffness measurements in vivo, Hear. Res., 42, 211-228 (1989) · doi:10.1016/0378-5955(89)90146-9 [10] M. N. Rudicyn, P. J. Artemov, and M. I. Luboshic,Handbook on Resistance of Materials [in Russian], Minsk (1961). [11] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), New York: McGraw-Hill, New York · Zbl 0114.40801 [12] Holley, M. C.; Ashmore, J. F., A cytosceletal spring in cochlear outer hair cells, Nature, 335, 635-637 (1988) · doi:10.1038/335635a0 [13] Brundin, L.; Flock, A.; Canlon, B., Tuned motile responses of isolated cochlear outer hair cells, Acta Oto-Laryngol. Supplement, 467, 229-234 (1989) [14] Brundin, L.; Russel, I.; Duifhuis, H.; Horst, J. W.; van Dijk, P.; van Netten, S. M., Sound induced movements and frequency tuning in outer hair cells isolated from the guinea pig cochlea, Biophysics of Hair Cell Sensory Systems, 182-191 (1993), Singapore: World Scientific, Singapore [15] Brownell, W. E.; Kachar, B.; Allen, J. B.; Hall, J. L.; Habbard, A. E.; Neely, S. T.; Tubis, A., Outer hair cells motility: a possible electrokinetic mechanism, Peripheral Auditory Mechanisms, 369-376 (1985), Berlin: Springer-Verlag, Berlin [16] Ashmore, J. F.; Brownell, W. E., Kilohertz movement induced by electrical stimulation in outer hair cells isolated from the guinea pig cochlea, J. Physiol., 377, 41-53 (1986) [17] Evans, B. N.; Hallworth, R.; Dallos, P.; Dallos, P.; Geisler, C. D.; Matthews, J. W.; Ruggero, M. A.; Steele, C. R., The nonlinearity of hair cell motility: implication for cochlear physiology and pathology, The Mechanics and Biophysics of Hearing, 61-68 (1990), Berlin: Springer-Verlag, Berlin [18] C. R. Steele and D. H. Jen, “Analysis of the streaming flow induced in the tectorial gap,” manuscript (1991). [19] De Boer, E., The sulcus connection. On a mode of participation of outer hair cells in cochlear mechanics, J. Acoust. Soc. Am., 93, No. 5, 2845-2859 (1993) [20] Steele, C. R., Possibility for sub-tectorial fluid motion, Basic Mechahisms in Hearing, Proc. Symposium, Stockholm, Oct. 1972, 69-94 (1973), New York: Academic Press, New York [21] LePage, E. L., Hysteresis in cochlear mechanics and a model for variability in noise-induced hearing loss, The IVth International Conference on the Effects of Noise on the Auditory System (Beauine, France, 28-30 May) (1990), Philadelphia, Toronto: B. C. Decker, Philadelphia, Toronto [22] Flock, Å.; Flock, B.; Ulfendahl, M., Mechanisms of movement in outer hair cells and a possible structural basis, Arch. Otolaryngol., 243, 83-90 (1986) [23] Karlsson, K. K.; Ulfendahl, M.; Khanna, S. M.; Flock, Å., The effect of quinine on the cochlear mechanics in the isolated temporal bone preparation, Hear. Res., 53, 95-100 (1991) · doi:10.1016/0378-5955(91)90216-V [24] Manley, G.; Taschenberger, G.; Duifhuis, H.; Horst, J. W.; van Dijk, P.; van Netten, S. M., Spontaneous oto-acoustical emissions from a bird: a preliminary report, Biophysics of Hair Cell Sensory Systems, 33-39 (1993), Singapore: World Scientific, Singapore [25] Kronester-Frei, A., The effect of changes in endolymphatic ion concentrations on the tectorial membrane, Hear. Res., 1, 81-94 (1979) · doi:10.1016/0378-5955(79)90019-4 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.