zbMATH — the first resource for mathematics

Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. (English) Zbl 0968.76054
J. Comput. Phys. 155, No. 2, 248-286 (1999); erratum ibid. 158, No. 2, 262 (2000).
The paper describes a method for the extension of compressible flow solvers to the zero Mach number limit. The proposed scheme involves an explicit flux computation followed by two pressure-correction steps ensuring consistency of fluxes and velocities with the divergence constraint in the zero Mach number limit. Thus, one time step requires the solution for two Poisson-type equations for which a multigrid approach is employed. The authors give a discussion how the proposed method relates to other common zero Mach number approaches like projection or SIMPLE-type methods. By a variety of numerical examples they investigate the accuracy and applicability of the method. The results indicate that the method is able to handle second-order accurately complex zero Mach number problems with large density variations. Thus, the method appears to be promising, for instance, for applications in combustion. However, conclusions how the proposed approach compares to other commonly used techniques (e.g. SIMPLE-type methods) with respect to computational efficiency cannot be drawn from the given results.

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics, general
Full Text: DOI
[1] Pember, R.B.; Howell, L.H.; Bell, J.B.; Colella, P.; Crutchfield, W.Y.; Fiveland, W.A.; Jessee, J.P., An adaptive projection method for unsteady, low-Mach number combustion, (1998)
[2] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible navier – stokes equations, (1988)
[3] Bell, J.; Marcus, D., A second-order projection method for variable-density flows, J. comput. phys., 101, 334, (1992) · Zbl 0759.76045
[4] Bruneau, C.H.; Jouron, C., An efficient scheme for solving steady incompressible navier – stokes equations, J. comput. phys., 89, 389, (1990) · Zbl 0699.76034
[5] Karki, K.C.; Patankar, S.V., Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations, Aiaa j., 27, 1167, (1989)
[6] Viozat, C., Implicit upwind schemes for low Mach number compressible flows, (1997)
[7] Zienkiewicz, O.C.; Szmelter, J.; Peraire, J., Compressible and incompressible flow: an algorithm for all seasons, J. comput. methods appl. mech. eng., 78, 105, (1990) · Zbl 0708.76099
[8] C.-D. Munz, S. Roller, R. Klein, and, K. J. Geratz, The extension of incompressible flow solvers to the weakly compressible regime, submitted. · Zbl 1042.76045
[9] Chorin, A.J., Numerical solution of incompressible flow problems, Stud. numer. anal., 2, 64, (1968)
[10] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comp., 22, 745, (1968) · Zbl 0198.50103
[11] Turkel, E., J. comput. phys., 72, 277, (1987)
[12] Einfeldt, B., Inst. f. geometrie u. praktische Mathematik, On Godunov type methods for gas dynamics, (1986)
[13] Puckett, E.G.; Almgren, A.S.; Bell, J.B.; Marcus, D.L.; Rider, W.J., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. comput. phys., 130, 269, (1997) · Zbl 0872.76065
[14] Bijl, H.; Wesseling, P., A unified method for computing incompressible and compressible flows in boundary-fitted coordinates, J. comput. phys., 141, 153, (1998) · Zbl 0918.76054
[15] Guillard, H.; Viozat, C., On the behavior of upwind schemes in the low Mach number limit, (1997)
[16] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. fluids, 8, 2182, (1965) · Zbl 1180.76043
[17] Demirdzic, I.; Peric, M., Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries, Int. J. numer. methods fluids, 10, 771, (1990) · Zbl 0697.76038
[18] Geratz, K.J., Rheinisch-westfälischen technischen hochschule Aachen, Erweiterung eines Godunov-typ-verfahrens für zwei-dimensionale kompressible strömungen auf die Fälle kleiner und verschwindender machzahl, (1997)
[19] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. one-dimensional flow, J. comput. phys., 121, 213, (1995) · Zbl 0842.76053
[20] Sesterhenn, J.L., Zur numerischen berechnung kompressibler strömungen bei kleinen Mach-zahlen, (1995)
[21] Sesterhenn, J.L.; Müller, B.; Thomann, H., Flux-vector splitting for compressible low Mach number flow, J. comput. fluids, 22, 441, (1993) · Zbl 0779.76077
[22] van Leer, B., Towards the ultimate conservative difference scheme. I. the quest of monotonicity, Lecture notes in phys., 18, 163, (1973) · Zbl 0255.76064
[23] van Leer, B., Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in a second-order scheme, J. comput. phys., 14, 361, (1974) · Zbl 0276.65055
[24] van Leer, B., Towards the ultimate conservative difference scheme. III. upstream-centered finite-difference schemes for ideal compressible flow, J. comput. phys., 23, 263, (1977) · Zbl 0339.76039
[25] van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. comput. phys., 23, 276, (1977) · Zbl 0339.76056
[26] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. comput. phys., 32, 101, (1979) · Zbl 1364.65223
[27] Gresho, P.M.; Chan, S.T., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. part 2. implementation, Int. J. numer. methods fluids, 11, 621, (1990) · Zbl 0712.76036
[28] Ghia, K.N.; Ghia, U.; Shin, C.T., High-re solutions for incompressible flow using the navier – stokes equations and a multigrid method, J. comput. phys., 48, 387, (1982) · Zbl 0511.76031
[29] Terhoeven, P., Rheinisch-westfälischen technischen hochschule Aachen, Ein numerisches verfahren zur berechnung von flammenfronten bei kleiner machzahl, (May 22, 1998)
[30] Wesseling, P., An introduction to multigrid methods, (1991)
[31] Courant, R.; Friedrichs, K.O.; Lewy, H., Über die partiellen differenzengleichungen der physik, Math. ann., 100, 32, (1928) · JFM 54.0486.01
[32] Sauer, R., Theoretische einfuehrung in die gasdynamik, (1943)
[33] Almgren, A.S.; Bell, J.B.; Colella, P.; Howell, L.H.; Welcome, M.L., A conservative adaptive projection method for the variable density incompressible navier – stokes equations, (1996)
[34] Klainerman, S.; Majda, A.J., Compressible and incompressible fluids, Comm. pure appl. math., 35, 629, (1982) · Zbl 0478.76091
[35] Schochet, S., Asymptotics for symmetric hyperbolic systems with a large parameter, J. differential equations, 75, 1, (1988) · Zbl 0685.35014
[36] Schulz-Rinne, C.W., The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes, (1993)
[37] Soh, W.Y.; Goodrich, J.W., Unsteady solution of the incompressible navier – stokes equations, J. comput. phys., 79, 113, (1988) · Zbl 0651.76012
[38] Strang, G., On the construction and comparison of difference schemes, SIAM J. numer. anal., 5, 506, (1968) · Zbl 0184.38503
[39] Patankar, S.V.; Spalding, D.B., A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flow, Int. J. heat mass transfer, 15, 1787, (1972) · Zbl 0246.76080
[40] Smiljanovski, V.; Moser, V.; Klein, R., A capturing-tracking hybrid scheme for deflagration discontinuities, J. combust. theory modeling, 1, 183, (1997) · Zbl 0956.76070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.